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(4)     Introduction 

Computer-aided diagnosis (CAD) has been shown to be useful as a second opinion to 
radiologists for breast cancer detection on mammograms. All current CAD systems have been 
developed for digitized screen-film mammograms (DFM). With the recent advent of full field 
digital mammography (FFDM) systems, it is important to develop CAD systems specifically 
designed for direct digital mammograms (DMs) in order to fully exploit the advantages of 
FFDM. Although many computer vision techniques developed for digitized films may be used 
for DMs, proper adaptation and extensive training of the current algorithms for the new type of 
images will be required. More importantly, new techniques still need to be developed to 
further improve the current algorithms for DFMs as well as for adapting to FFDM. 

The goal of the proposed research is to develop a CAD system for breast cancer 
diagnosis using advanced computer vision techniques. The proposed CAD system will assist 
radiologists with detection and classification of breast lesions. Previous CAD methods for 
lesion detection and characterization are generally based on image features extracted from a 
single view. Our proposed approach is based on two steps: the first step uses single view 
detection to identify lesion candidates on individual mammograms, the second step is to fuse 
image information from multiple views to reduce false positives and thus to improve the 
overall accuracy. Although the main goal of this project is to develop a CAD system for DMs, 
we plan to extend the CAD development to DFMs for the following reasons: (1) digital 
mammography only became available in the last few years, multiple-view film mammograms 
with breast lesions are more commonly available in existing patient files, and (2) screen-film 
mammography will still be the main modality for breast cancer screening in the near future. 
Therefore, we will first develop the multiple-view correlation techniques for the CAD system 
of the DFMs. These new techniques will then be adapted to the CAD system for DMs. We 
believe that this approach is more efficient and we will obtain a CAD system for DMs as well 
as improve the CAD system for DFMs. 

The following specific aims will be addressed: (1) Collection of databases of both 
DMs and DFMs and design of a database management system. (2) Improvement of single- 
view computer vision techniques for mass detection and classification in DFMs. (3) 
Improvement of single-view computer vision techniques for microcalcification detection 
and classification in DFMs. (4) Development of methods for correlation of image 
information from two-view DFMs. (5) Comparison of the detection and classification 
accuracy of the multiple-view fusion CAD system with the performance of the single-view 
CAD system by receiver operating characteristic (ROC) and FROC analyses. (6) 
Adaptation of the computer vision techniques to the CAD system for DMs. (7) Adaptation 
of the multiple-view fusion methods to the CAD system for DMs. 

We will develop novel regional registration methods for identifying corresponding 
lesions on craniocaudal (CC) and mediolateral oblique (MLO) views. The multiple image 
information will be fused with specially designed correspondence classifiers or fuzzy 
classification to reduce false positives and to improve lesion detection sensitivity. Multiple- 
view features of a lesion will be merged using neural networks or other classifiers for 
classification of malignant and benign lesions. In addition, new computer vision techniques 
will be developed in each of the four areas to improve the current methods. The techniques 
will be first developed for DFMs. The algorithms for DFMs will then be adapted to DMs, 
taking into account the differences in the imaging characteristics between DMs and DFMs. 
Databases of DFMs and DMs will be collected from our patient population with IRB approved 
protocol and extensive training and independent testing of the new CAD system will be 
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performed. The test performance of the multiple-image correlation CAD algorithms for 
detection and characterization of lesions on DFMs will be compared with the one-view 
approach on DFMs as well as the performances of CAD systems for DMs using ROC 
methodology. 

DM or DFM not only has the potential to detect breast cancer in an early stage, it will 
also facilitate consultation via teleradiology in remote or rural regions where expert 
mammographers may not be readily available. An effective CAD system will be particularly 
useful for providing an additional on-site or remote second opinion. This will be highly 
relevant to women in the military, especially when they are stationed in remote areas. DM in 
combination with CAD will fully utilize the potential of mammography to improve the health 
care of women both in the military and in the general population. 

(5)    Body 

This is the second year annual report of our project. In the project period (5/1/03- 
4/30/04), we have extended our investigations to both the CAD systems for DMs and 
DFMs, and performed a number of studies to develop the CAD system for breast cancer 
diagnosis. A summary of some of the important accomplishments follows. 

(A)      Collection   of   databases   of   digital   mammograms   and   digitized   Him 
mammograms 

We continue to collect the database of digital mammograms (DMs) with 
mammographic masses or clustered microcalcifications for the development of our 
computer-aided diagnosis (CAD) algorithms. We have collected about 140 cases. The 
patients were diagnosed with in their mammograms during their normal clinical care, either 
by routine screening or by referral to our breast imaging clinic for evaluation. Most of the 
cases contained both DMs and screen-film mammograms. The digital mammograms were 
acquired with a GE Senographe 2000D full field digital mammography (FFDM) system. 
The pixel size of the system is 100 ^m X 100 jim. The gray level resolution of the system 
is 14 bits for the raw images and 12 bits for the processed images. After acquisition, the 
digital image files are transmitted to the Siemens Archive which is the PACS system used 
in our department for storage of all clinical digital images. 

With Institutional Review Board (IRB) approval, we retrieved the DMs from the 
Siemens Archive to our laboratory and digitized the film mammograms from the same 
patient. The film mammograms were digitized with a Lumiscan 85 laser scanner at a pixel 
size of 50 nm X 50 [im and a 12 bit gray level. We have developed a database 
management program based on Microsoft Access to process the images downloaded to our 
system. For each mammogram file, all patient identifiers are first removed from the image 
header. The patient name is replaced with a code number. The image is then named by 
the code number, the view (craniocaudal, mediolateral oblique, or mediolateral), and the 
exam year. A record is generated in the database file for each image. The record keeps the 
code number, the lesion type, the view, and the exam date information for each case. 
When the pathology of the case is available, the malignant or benign information of the 
lesion is also entered. Each case in the database will be read by an experienced MQSA 
radiologist to mark the lesion location. For microcalcification cases, the radiologist 
measures the diameter of the cluster,  and provides description of its distribution. 
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morphology, and visibility of the microcalcifications. For mass cases, the radiologist 
measures the diameter of the mass, and provides description of its margin, shape, 
spiculated or non-spiculated, the visibility, and the density of the mass relative to that of 
the parenchyma. For all cases, the radiologist also provides BI-RADS description of the 
breast density and estimates the likelihood of malignancy of the lesion. These descriptions 
are entered into the database for each case as a reference for future analysis. 

(B)      Comparison of density segmentation on digitized film mammograms and 
digital mammograms 

Mammographic sensitivity is limited by the breast density. Dense fibroglandular 
tissue appears as low optical density regions on mammograms. If masses or clustered 
microcalcifications overlap with the dense tissue, the radiographic contrast between the 
lesion and the normal tissue will be low and the detectability of the lesion will be reduced. 
One of the expected advantages of DM over film mammograms is that the higher contraist 
sensitivity of digital detector and the image processing applied to the DMs may improve 
the mammographic sensitivity and thus reduce the false negative detection rate of 
mammography. We have performed a study to compare the breast density estimated on 
pairs of digital mammogram (DM) and (DFM) obtained from the same patients. This study 
may provide useful insight on the relative performance of DMs and DFMs for radiologist's 
interpretation and computerized image analysis. We reported the preliminary results of this 
study in last year's annual report. The study was completed during the current year and 
was presented at the Radiological Society of North America (RSNA) Annual Meeting in 
the November of 2003. The study is summarized below. 

Methods: 

One hundred ninety-eight pairs of DM and DFM (99 CC views and 99 MLO views) 
were collected with IRB approval from 99 patients. The time interval between the DM and 
DFM ranged from 0 to 118 days (median=26.3 days). The DFMs were acquired with GE 
DMR systems and the DMs were acquired with the GE Senographe 2000D system. Both 
the DMs and the DFMs were acquired with automated exposure techniques that selected 
the appropriate target, filter, and kVp. The breast boundaries on the DMs and DFMs were 
detected automatically by the computer. The mammograms were displayed on a 
workstation with a graphical user interface (Fig. 1) that allowed the radiologist to perform 
interactive thresholding of the gray level histograms to segment the dense region from the 
fatty region. The DMs and DFMs were segmented independently in separate sessions so 
that the reader could not compare the density of the corresponding DM and DFM. The 
mammographic density was estimated as the percent dense area relative to the breast area. 
For the MLO views, the pectoral muscle was excluded from the breast area calculation. 
Five MQSA radiologists participated as readers and segmented the breast density 
independently with interactive thresholding. 
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Fig. 1. An example of density segmentation on digital mammograms. Left: 
original mammogram. Middle: processed image. Right: segmentation 
result of breast density. Lower: Gray level histogram of processed 
image with a manually selected threshold. 

Results: 

We analyzed the x-ray imaging techniques selected automatically by the screen-film 
mammography systems and the digital mammography system. The distribution of the 
target/filter combination for the CC and the MLO views are compared separately in Fig. 2. 
For the DM system, the majority of the mammograms were acquired with the Rh/Rh 
combination. For the screen-film system, the majority of the mammograms were acquired 
with the Mo/Mo combination. The difference in the kV settings between the DM and the 
screen-film mammograms are shown in Fig. 3. Most of the DMs were acquired with a 
higher kV than that for the screen-film mammograms. The average difference in kV was 
2.4 kV and 2.5 kV, respectively, for the CC view and the MLO view. 
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Mo/Mo     Mo/Rh      Rh/Rh 
Target/Filter Combination 

Mo/IVIo     Mo/Rh      Rh/Rh 
Target/Filter Combination 

Fig. 2. Comparison of the target/filter combination selected by the x-ray system for acquisition of 
the digital and digitized mammograms. Left: CC view; Right: MLO view. 

-5-4-3-2-10123456 

kV Difference (Digital-Film) 

-5-4-3-2-10123456 

kV Difference (Digital-Film) 

Fig. 3. The difference in kV selected by the x-ray system for acquisition of the digital and digitized 
mammograms. Left: CC view; Right: MLO view. 

An example of density segmentation with interactive thresholding using the 
graphical user interface is shown in Fig. L Fig. 4 shows the distribution of the difference 
in the % breast density segmented from the DFM compared to that of the DM for the same 
breast and the same view. The majority of the differences are positive. Fig. 5 shows the 
distribution of the ratio of the % breast density of the DFM to that of the corresponding 
DM for the same breast and the same view. The majority of the ratios are greater than L 
Table 1 summarizes the mean difference in the % breast density and the mean ratio of the 
% breast density for the corresponding DM and DFM for the same breast and the same 
view for the 5 radiologists. The mean differences for four of the five radiologists were 
greater than zero and the mean ratios were greater than 1, indicating that the DFM was 
perceived by the radiologists as more dense than the DM. One of the five radiologists had 
a mean difference smaller than zero and a mean ratio of smaller than, indicating that this 
radiologist perceived the breast density as more dense in the DMs. The mean difference 
and the mean ratio over all 5 radiologists were positive and greater than 1, respectively. 
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Fig. 5.   The ratio of % breast density between the corresponding DFM and DM of the same breast 
and the same view. Left: CC view; Right: MLO view. 

Conclusion: 

The mammographic density was significantly higher on film mammograms than on 
digital mammograms, as segmented by 4 of the 5 radiologists. On average, the perceived 
breast density was about 30% higher on film mammograms than on digital mammograms. 
The difference in the perceived density may be caused by the harder beam quality used and 
the image processing applied to the DMs. The lower density on DMs may improve the 
mammographic sensitivity for lesion detection on dense breasts. However, radiologists 
often compared current and prior mammograms for detection of developing focal density 
that may be an early sign of breast cancer. If a patient has DFMs in prior exams and the 
new exam is performed with DM, the significant reduction in mammographic density due 
to the change in imaging techniques may reduce the sensitivity of detecting developing new 
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focal density. The radiologists will have to take into consideration the differences between 
the properties of DFMs and DMs when reading these cases. 

Table 1. Comparison of the mean % breast density manually segmented by 5 radiologists 
from corresponding DFM and DM of the same breast and the same view. 

Radiologist 
Mean Difference in 

% Density 
(Film - Digital) 

Mean Ratio of 
% Density 

(Film/Digital) 

Radl 4.92 1.35 

Rad2 5.50 1.53 

Rad3 4.63 1.39 

Rad4 4.66 1.35 

Rad5 -2.01 0.88 

Average (all) 3.54 1.30 

Average (#1 - #4) 4.93 1.40 

(C)      Computer-aided diagnosis system for mass detection: comparison of 
performance on digital mammograms and digitized film mammograms 

We have been investigating methods for improvement of the CAD system for 
detection of masses on DFMs as well as adapting the CAD system to mass detection on 
DMs. In the annual report of 2003, we have reported a preliminary study of comparing the 
performance of the two systems on pairs of DM and DFM images obtained from the same 
patients. In this project year, we have evaluated new image enhancement techniques and 
false positive (FP) reduction methods and compared the performance of the two improved 
systems with a larger data set. The results were reported in the RSNA meeting of 2003 and 
the PRMRP Investigators Meeting in April of this year. The study is summarized below. 

Methods: 

Our CAD system consisted of four steps: image enhancement, clustering-based 
region growing and local refinement, extraction of morphological and texture features, and 
rule-based and linear classification for FP reduction. Previously, image enhancement was 
achieved by a density-weighted contrast enhancement (DWCE) filter. In this study, the 
DWCE filter was replaced by a gradient field analysis method that located mass candidates 
based on the locations where strong gradient converged radially towards a point. New 
gradient field feature and morphological features were incorporated into the linear 
classifier in the FP reduction step. The simplex optimization procedure was used in the 
stepwise feature selection process to select the most effective features for classification of 
true masses and normal breast tissues. A schematic of the mass detection CAD system for 
DMs is shown in Fig. 6. The system for DFMs is similar except that it does not need 
preprocessing with the multiscale enhancement. The Laplacian Pyramid preprocessing for 
DMs was described in last year's annual report. 
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Raw FFDM image 

Multi-scale Enhancement 
(Weighted Laplaclan Pyramid reconstruction) 

Prescreening 
(Gradient field analysis) 

Identification of Suspicious Structures 
(Clustering-based region growing) 

Feature Extraction 
(Morphological and texture features) 

False-positive Reduction 
(Rule-based and linear discriminant analysis) 

Fig. 6. Schematic for mass detection in full-field digital mammograms. 

We used a data set of 100 cases containing two-view DMs acquired with a GE 
FFTDM system and the corresponding DFMs of the same views for the same breast. The 
data set contained 102 masses. The true locations of the masses were identified by an 
experienced MQSA radiologist. The data set was split into a training set and a test set, 
with 50 cases in each set. The new mass detection CAD system was trained separately for 
DMs and DFMs. The CAD system trained with DFMs was applied to the test set of 
DFMs, and that trained with DMs was applied to the test set of DMs. The performances of 
the CAD systems for the DMs and the DFMs were compared by the free response receiver 
operating characteristic (FROC) analysis. 

Results: 

The FROC curves for the training and test sets are plotted in Fig. 7 and Fig. 8, 
respectively. The FROC curve shows the detection sensitivity (TPF) as a function of FPs 
per image and thus shows the trade-off between sensitivity and specificity of a detection 
algorithm. The sensitivity was estimated on single-view (image-based) mammogram as 
well as on two-view (case-based) mammograms. One-view scoring counts the mass on 
each mammogram independently. On the other hand, two-view scoring counts a TP if the 
mass is detected at least on one of the two views and the total number of masses is the total 
number of two-view pairs. Two-view scoring assumes that a radiologist will not overlook 
the mass as long as the CAD system marks the mass in at least one view. Two-view 
scoring generally shows a higher sensitivity because a mass is counted as TP even if it is 
missed in one of the two views. The FP rates for the one view and two-view detection are 
also tabulated in Table 2 and Table 3 at several sensitivity values for the training set and 
test set, respectively. It can be seen that the FROC curves for the DM and the DFM are 
very close for the training set. The FROC curves for the DMs are slightly higher than those 
for the DFMs in the test set. The FP rates are 2.0 and 2.1 per image for DMs and DFMs, 
respectively at 90% sensitivity and 1.7 and 1.9 per image, respectively, at 85% sensitivity. 
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Table 2. Comparison of detection accuracy in full field digital mammogram 
(DM) and digitized film mammograms (DFM) for the training set. 
TPF=true positive fraction, FP=false positive 

Image-based Case-based 

TPF 
FPs/image 

TPF 
FPs/image 

DM DFM DM DFM 

75% 1.8 1.6 90% 1.4 1.6 

70% 1.2 1.2 85% 1.0 1.0 

65% 1.0 1.0 80% 0.8 0.7 

Table 3. Comparison of detection accuracy in full field digital mammogram 
(DM) and digitized film mammograms (DFM) for the test set. 
TPF=true positive fraction, FP=false positive 

Image-based Case-based 

TPF 
FPs/image 

TPF 
FPs/image 

DM DFM DM DFM 

75% 90% 2.0 2.1 

70% 2.0 2.2 85% 1.7 1.9 

65% 1.6 1.8 80% 1.2 1.4 

Conclusion: 

After training with case samples from each modality, our mass detection CAD 
scheme can be useful for detecting masses on both DMs and DFMs. Further study is 
underway to improve the various stages of each of the mass detection systems based on the 
properties of the DM and DFM images, respectively. 

(D)      Computer-aided diagnosis on mammograms using multiple image analysis: 
computerized nipple identiflcation 

Correlation of information from multiple-view mammograms (e.g., MLO and CC 
views, bilateral views, or current and prior mammograms) can improve the performance of 
breast cancer diagnosis by radiologists or by computer. Nipple is a reliable and stable 
landmark on mammograms for the registration of multiple mammograms. However, 
accurate identification of nipple location on mammograms is challenging because of the 
variations in image quality and in the nipple projections, resulting in some nipples nearly 
invisible on the mammograms. In this study, a computerized method was developed to 
automatically identify nipple location on mammograms. 
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Methods: 

We developed a two-stage method for nipple detection as shown in Fig. 9. The 
nipple location was identified using the gray level information around the nipple, geometric 
characteristics of nipple shapes, and the texture features of glandular tissue or ducts 
converging towards the nipple. The breast boundary was first obtained using a gradient- 
based boundary tracking algorithm, then the gray level profiles along the inside and outside 
of the boundary were extracted. A geometric convergence analysis was used to limit the 
nipple search to a region of the breast boundary. At the first stage, a rule-based method was 
designed to identify the nipple location by detecting significant changes of intensity along 
the gray level profiles inside and outside the breast boundary and the changes in the 
boundary direction. At the second stage, a texture orientation-field analysis was developed 
to estimate the nipple location based on the convergence of the texture pattern of glandular 
tissue or ducts towards the nipple. The nipple location was finally determined from the 
detected nipple candidates by a rule-based confidence analysis 

We randomly selected 377 and 367 DFMs for training and testing the nipple 
detection algorithm. The nipple location identified by two experienced radiologists was 
used as the ground truth. In the training data set, 301 nipples could be identified positively 
and were referred to as visible nipples, 76 nipples could not be identified positively and 
were referred to as invisible nipples. In the test data set, 298 and 69 of the nipples were 
identified as visible and invisible, respectively. The nipple locations of the invisible group 
were estimated by the radiologists for comparison with the computer estimates. 

Inner & Outer Profile & 
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Fig. 9.   Schematic of the automated nipple search method 

Results: 

The detection accuracy for training and testing of the algorithms is summarized in 
Table 4. In the training set, the computerized method could detect 89.37% (269/301) of the 
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visible nipples and 69.74% (53/16) of the invisible nipples within 1 cm of the truth. In the 
test data set, 92.28% (275/298) of the visible nipples and 53.62% (37/69) of the invisible 
nipples were identified within 1 cm of the truth. 

Table 4. Performance of the automated nipple detection program. The nipple 
detection accuracy is quantified as the percentage of images in which 
the detected nipple location is within 1 cm to the ground truth. 

Number of 
Images 

Rule-based method Rule-based method 
with texture analysis 

Training 
set 

Visible 301 82.39% (248/301) 89.37% (269/301) 

Invisible 76 65.79% (50/76) 69.74% (53/76) 

all 377 79.05% (298/377) 85.41% (322/377) 

Test set Visible 298 89.93% (268/298) 92.28% (275/298) 

Invisible 69 47.83% (33/69) 53.62% (37/69) 

All 367 82.02% (301/367) 85.01% (312/367) 

Conclusion: 

Accurate identification of nipple location on mammograms is challenging because 
of the variations in image quality and in the nipple projections, especially for the nipples 
that are nearly invisible on the mammograms. In this work, we developed a two-stage 
computerized nipple identification method to detect or estimate the nipple location. The 
results demonstrate that the visible nipples can be accurately detected by our computerized 
image analysis method. The nipple location can be reasonably estimated even if it is 
invisible. Automatic nipple identification will provide the foundation for multiple image 
analysis in CAD. 

(E) Evaluation of two-view fusion techniques and the effects of computer-aided 
diagnosis on radiologists' characterization of malignant and benign breast 
masses in two-view temporal pairs of mammograms 

We are developing an automated CAD program to classify masses as malignant or 
benign based on interval change information on serial mammograms. The classifier was 
initially developed with single-view mammograms. In this project year, we compared 
fusion methods to combine the single-view classifier output scores to two-view (CC and 
MLO views) scores and studied if two-view classification could improve classification 
accuracy. We also conducted observer performance experiments with ROC methodology 
to evaluate the effects of CAD on radiologists' estimates of the likelihood of malignancy of 
masses. 
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Methods: 

We have designed a computerized method to analyze the current and prior 
information for a temporal pair. In each region of interest (ROI) containing the current or 
prior mass, the segmentation of the mass from the surrounding background tissue was 
carried out in two stages. K-mean clustering was first used to extract an initial contour. The 
initial contour was then used as the starting point for the active contour model, which 
allowed more accurate and refined segmentation of the mass boundary. From each 
automatically segmented mass, a total of 35 features, including 20 run-length statistics 
(RLS) texture features, 12 morphological and 3 spiculation features, were extracted from 
each ROI. Additionally, difference features were derived by subtracting a feature of the 
prior mass from the corresponding feature of the current mass. Therefore, 35 difference 
features were derived from the 20 RLS texture, 12 morphological and 3 spiculation 
features. 

A total of 300 mammograms, containing CC and MLO views and serial exams, 
was obtained from the files of 68 patients, from which 90 two-view temporal pairs of the 
masses (47 malignant and 43 benign) were formed. The classifier was designed based on 
the single-view CC and MLO temporal pairs. A "leave-one-case-out" resampling method 
was used for training and testing the classifier. A test classifier score was obtained for each 
single-view CC or MLO temporal pair. The score for a two-view temporal pair was then 
derived by merging the scores of the corresponding CC and MLO single-view temporal 
pairs of the same mass. We compared three fusion methods in this study: maximum, 
minimum, and average, and found that averaging provided the highest classification 
accuracy. The average score was therefore obtained from the single-view scores, and this 
merged score was used as an estimate of the relative malignancy rating from the two views 
of the mass by the classifier. The average score was linearly transformed to a scale of 1 to 
10 and the transformed rating was presented to the observers in the observer study. Eight 
MQSA radiologists and 2 breast imaging fellows participated as observers in this study. 
The 90 two-view temporal pairs of masses were divided into two case groups. Each 
observer read the 180 cases (90 cases X two reading conditions: with and without CAD) in 
two reading sessions, separated by at least one month. In each session, one case group was 
read using the without-CAD mode and the other using the with-CAD mode. The order of 
the two reading conditions was switched between the two reading sessions and the order of 
the cases within each case group was randomized for each observer. The orders of the 
case groups and the reading conditions were arranged in a counter-balanced design such 
that no case group or reading condition would be read first more often than the other when 
averaged over all observers. 

Results: 

The results indicated that two-view fusion of the classifier scores improved the 
classification accuracy (Az) from 0.86 for the 180 single-view temporal pairs to 0.90 for the 
corresponding 90 two-view temporal pairs. For the observer study, the observers' 
estimated likelihood of malignancy ratings were analyzed by the Dorfman-Berbaum-Metz 
(DBM) multi-reader multi-case (MRMC) methodology (1). The ROC curve was derived 
from a maximum likelihood estimation of the binormal distributions fitted to the 
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observers' rating data and the area under the ROC curve, Az, was calculated. The 
statistical significance of the difference between the studied modalities was estimated by 
the DBM method and by the Student's two-tailed paired t-test for observer-specific paired 
data. The Az values and the partial area index above a sensitivity of 0.9, A^'^'^K for the 
characterization of the masses in the two reading modes: without-CAD and with-CAD by 
the 10 radiologists are tabulated in Table 5. The improvement in Az without CAD to with 
CAD was statistically significant (p=0.031. Student's paired t-test; p=0.046, DBM 
method). The partial area index for the reading with CAD also improved from that without 
CAD, but the improvement did not achieve statistical significance. 

Conclusion: 

Two-view information fusion can improve the classification accuracy for breast 
masses. From the results of our observer study that evaluated the effects of CAD on 
radiologists' characterization of masses, we found that CAD using interval change analysis 
on two-view serial mammograms can significantly improve radiologists' classification 
accuracy of masses and thereby may improve the accuracy of biopsy recommendations. 
The reduction in unnecessary biopsy will reduce health care costs and patient anxiety. 

Table 5. The area under ROC curve, Az, and the partial area index above a sensitivity 
of 0.9, Az^°''\ for the characterization of the masses in the two reading 
modes: without-CAD and with-CAD by the 10 radiologists. 

Radiologist Az Az ^m j,m 

No. Without-CAD With CAD Without-CAD With CAD 

1 0.75 ± 0.05 0.88 ± 0.04 0.13 0.63 
2 0.86 ± 0.04 0.86 ± 0.04 0.41 0.52 
3 0.80 ± 0.05 0.80 ±0.05 0.17 0.30 
4 0.88 ± 0.04 0.92 ± 0.03 0.46 0.73 
5 0.74 ± 0.05 0.84 ± 0.04 0.20 0.48 
6 0.86 ± 0.04 0.87 ± 0.04 0.48 0.31 
7 0.85 ± 0.04 0.85 ± 0.04 0.52 0.56 
8 0.88 ± 0.04 0.86 ± 0.04 0.54 0.46 
9 0.78 ± 0.05 0.83 ±0.04 0.15 0.18 
10 0.77 ± 0.05 0.84 ± 0.04 0.22 0.21 

Average 0.83 0.87 0.35 0.49 

(6)     Key Research Accomplishments 

•    Continue collection of a database of digital mammograms and digitized film 
mammograms for development of the CAD algorithms for both digital 
mammography and film mammography (Task 1) 
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• Complete the observer study for comparison of density segmentation on 
digitized screen-film mammograms and digital mammograms. Understand the 
differences between the imaging techniques and the image properties of digital 
mammograms and digitized mammograms (Task 1, Task 2, Task 3, Task 
5) 

• Continue the development of CAD mass detection systems for digital 
mammograms and digitized film mammograms. Improve the prescreening 
methods and feature classifiers in both systems. Perform a study to compare 
the performance of the two improved CAD systems for mass detection on 
digital mammograms and digitized film mammograms by FROC analysis  
(Task 2) 

• Develop automated nipple detection method that will serve as a basis for 
multiple image fusion analysis for an advanced CAD system (Task 4, 
Task 5, Task 6) 

• Develop a computerized method for classification of malignant and benign 
masses using interval change analysis of two-view mammograms. Investigate 
the effects of CAD on radiologists' performance on classification of masses -— 
- (Task 2, Task 4, Task 6) 

(7)     Reportable Outcomes 

As a result of the support by the PRMRP grant, we have conducted studies in CAD 
for mammography and" published the results. The publications in this project year are listed 
in the following. 

Peer-Reviewd Journal Article: 

1. Wei J, Chan HP, Helvie MA, Roubidoux MA, Sahiner B, Hadjiiski L, Zhou C, 
Paquerault S, Chenevert T, Goodsitt MM. Correlation between Mammographic Density 
and Volumetric Fibroglandular Tissue Estimated on Breast MR Images. Medical 
Phvsics 2004; 31: 933-942. 

Articles Accepted for Publication; 

1.   Hadjiiski L, Chan HP, Sahiner B, Helvie MA, Roubidoux MA, Blane C, Paramagul C, 
Petrick N, Bailey J, Klein K, Foster M, Patterson S, Adler D, Nees A, Shen J. 
Improvement of radiologists' characterization of malignant and benign breast masses in 
serial mammograms by computer-aided diagnosis: An ROC study. Radiology- 

Conference Proceedings: 

1. Chan HP, Sahiner B, Hadjiiski LM, Petrick N, Zhou C. Design of three-class classifiers 
in computer-aided diagnosis: Monte Carlo simulation study. Proc SPIE 5032; 2003: 
567-578. 
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2. Hadjiiski L, Chan HP, Sahiner B, Helvie MA, Roubidoux MA, Blane C, Paramagul C, 
Petrick N, Bailey J, Klein K, Foster M, Patterson S, Adler D, Nees A, Shen J. ROC 
study: Effects of computer-aided diagnosis on radiologists' characterization of 
malignant and benign breast masses in temporal pairs of mammograms. Proc SPIE 
5032; 2003: 94-101. 

3. Zhou C, Chan HP, Sahiner B, Hadjiiski LM, Paramagul C. Computerized multiple 
image analysis on mammograms: performance improvement of automated nipple 
identification for registration of multiple views using texture and geometric 
convergence analyses. Proc SPIE 5370; 2004, (in press). 

4. Wei J, Sahiner B, Hadjiiski LM, Chan HP, Petrick N, Helvie MA, Zhou C, Ge Z. 
Computer aided detection of breast masses on full-field digital mammograms: false 
positive reduction using gradient field analysis. Proc SPIE 5370; 2004, (in press). 

5. Hadjiiski LM, Helvie MA, Sahiner B, Chan HP, Roubidoux MA, Nees A, Petrick N, 
Blane C, Paramagul C, Bailey J, Patterson S, Klein K, Adler D, Foster M, Shen J. ROC 
Study of the Effects of Computer-Aided Interval Change Analysis on Radiologists' 
Characterization of Breast Masses in Two-View Serial Mammograms. Proc SPIE 5370; 
2004, (in press). 

6. Sahiner B, Chan HP, Hadjiiski LM, Roubidoux MA, Paramagul C, Helvie MA, Zhou 
C. Multi-modality CAD: Combination of computerized classification techniques based 
on mammograms and 3D ultrasound volumes for improved accuracy in breast mass 
characterization. Proc SPIE 5370; 2004, (in press). 

Conference Abstracts and Presentations: 

1. Chan HP, Sahiner B, Hadjiiski LM, Zhou C, Petrick N, "Three-Class Classification 
Tasks in Computer-Aided Diagnosis," Presented at Medical Image Perception Society 
Conference, Durham, NC, September 11-14, 2003. 

2. Sahiner B, Chan HP, Hadjiiski LM, Zhou C, Wei J, Petrick N, "Comparison of 
resampling techniques for classifier performance estimation: the effects of feature 
selection, feature space dimensionality, and design sample size," Presented at Medical 
Image Perception Society Conference, Durham, NC, September 11-14, 2003. 

3. Petrick N, Hadjiiski LM , Chan HP, Sahiner B, Myers KJ, "Assessment of a 
mammographic mass detection scheme with clinical cases," Presented at Medical 
Image Perception Society Conference, Durham, NC, September 11-14 2003. 

4. Sahiner B, Chan HP, Hadjiiski LM, Helvie MA, Roubidoux MA, Petrick N. 
Computerized detection of microcalcifications on mammograms: Improved detection 
accuracy by combining features extracted from two mammographic views. Presented at 
the 89* Scientific Assembly and Annual Meeting of the Radiological Society of North 
America, Chicago, IL, November 30-December 5, 2003. RSNA Program 2003; 389. 

5. Chan HP, Wei, J, Zhou C, Helvie MA, Roubidoux MA, Bailey J, Paramagul C, Nees 
A, Hadjiiski LM, Sahiner B. Comparison of mammographic density estimated on 
digital mammograms and screen-film mammograms. Presentation at the 89* Scientific 
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Assembly and Annual Meeting of the Radiological Society of North America, Chicago, 
IL, November 30-December 5, 2003. RSNA Program 2003; 424. 

6. Wei, J, Sahiner B, Chan HP, Petrick N, Hadjiiski LM, Helvie MA. Computer-aided 
diagnosis system for mass detection: Comparison of performance on full-field digital 
mammograms and digitized film mammograms. Presented at the 89"^ Scientific 
Assembly and Annual Meeting of the Radiological Society of North America, Chicago, 
IL, November 30-December 5, 2003. RSNA Program 2003; 387. 

7. Hadjiiski LM, Chan HP, Sahiner B, Zhou C, Helvie MA, Roubidoux MA. 
Computerized Regional Registration of Corresponding Masses and Microcalcification 
Clusters on Temporal Pairs of Mammograms for Interval Change Analysis. Presented 
at the 89"' Scientific Assembly and Annual Meeting of the Radiological Society of 
North America, Chicago, IL, November 30-December 5, 2003. RSNA Program 2003; 
389. 

8. Sahiner B, Chan HP, Roubidoux MA, Helvie MA, Bailey J, Hadjiiski LM. An ROC 
Study on Characterization of Malignant and Benign Breast Masses in 3D Ultrasound 
Volumes: The Effect of Computer-Aided Diagnosis on Radiologists' Characterization 
Accuracy. Presented at the 89* Scientific Assembly and Annual Meeting of the 
Radiological Society of North America, Chicago, EL, November 30-December 5, 2003. 
RSNA Program 2003; 425. 

9. Zhou C, Hadjiiski LM, Sahiner B, Chan HP, Helvie MA, Wei, J. Computerized 
mammographic breast density estimation: Expectation-Maximization estimation and 
neural network classification of breast density. Presented at the 89* Scientific 
Assembly and Annual Meeting of the Radiological Society of North America, Chicago, 
IL, November 30-December 5, 2003. RSNA Program 2003; 389. 

10. Wei J, Sahiner B, Hadjiiski LM, Chan HP, Petrick N, Helvie MA, Zhou C, Ge Z. 
Computer aided detection of breast masses on full-field digital mammograms: false 
positive reduction using gradient field analysis. Poster presentation at the SPIE 
International Symposium on Medical Imaging, San Diego, CA, February, 2004. 

11. Hadjiiski LM, Helvie MA, Sahiner B, Chan HP, Roubidoux MA, Nees A, Petrick N, 
Blane C, Paramagul C, Bailey J, Patterson S, Klein K, Adler D, Foster M, Shen J. ROC 
Study of the Effects of Computer-Aided Interval Change Analysis on Radiologists' 
Characterization of Breast Masses in Two-View Serial Mammograms. Presented at the 
SPIE International Symposium on Medical Imaging, San Diego, CA, February, 2004. 

12. Zhou C, Chan HP, Sahiner B, Hadjiiski LM, Paramagul C. Computerized multiple 
image analysis on mammograms: performance improvement of automated nipple 
identification for registration of multiple views using texture and geometric 
convergence analyses. Presented at the SPIE International Symposium on Medical 
Imaging, San Diego, CA, February, 2004. 

13. Sahiner B, Chan HP, Hadjiiski LM, Roubidoux MA, Paramagul C, Helvie MA, Zhou 
C. Multi-modality CAD: Combination of computerized classification techniques based 
on mammograms and 3D ultrasound volumes for improved accuracy in breast mass 
characterization. Presented at the SPIE International Symposium on Medical Imaging, 
San Diego, CA, February, 2004. 
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14. Chan HP, Wei J, Sahiner B, Hadjiiski LM, Helvie MA, Petrick N, Roubidoux MA, 
Zhou C. Computer-aided diagnosis system of detection of breast masses on digital 
mammograms. Presented at the Peer Reviewed Medical Research Program (PRMRP) 
Investigators Meeting. Puerto Rico, April 26-28, 2004. Program book p.29. 

(8)     Conclusions 

Under the support of this grant, we have investigated various computer-aided 
diagnosis (CAD) methods for detection of lesions on mammograms. We continue to collect 
a database of full field digital mammograms that contain mammographic lesions from our 
breast imaging division in the Department of Radiology. The images include the 
manufacturer's processed images and unprocessed (raw) images. All collected cases are 
entered into our database management program that stores the coded case information to 
facilitate archiving and retrieval of the cases. In this project year, we also extend our studies 
to improve the CAD system for DFMs. Since conventional film mammograms are more 
commonly available in patient files, we believe that it will be more efficient to first develop 
new computer-vision techniques and multiple-view image information fusion methods with 
a large number of DFMs, and then adapt the new methods to the CAD system for DMs. 
This approach has the additional advantages that the CAD system for DFMs will also be 
improved with the multiple-view information fusion method. Since DFMs will continue to 
be used for screening mammography in most breast imaging clinics in the near future, the 
improvement of the CAD systems for DFMs will benefit a large number of patients who 
will undergo conventional screen-film mammography. Although the development of CAD 
methods for DFMs was not included in our original proposed Statement of Work, this 
extension will strengthen our research and broaden its scope of applications to breast cancer 
diagnosis. 

To facilitate the adaptation of the computer-vision techniques and the CAD system 
for DFMs to DMs, we investigated the image properties of DFMs and DMs taken of the 
same breasts within a short period of time. We compared the mammographic density 
estimated from the two types of mammograms by experienced radiologists. It was found 
that the correlation of the segmented breast density between the two types of images is very 
high. However, the estimated percent dense area on digital mammograms was, on average, 
about 3.5% lower than that estimated from digitized film mammograms. The average ratio 
of percent dense area on DFMs to that on DMs was 1.3. These results indicate that the 
perceived density on DMs is lower than that on DFMs. This difference in mammographic 
density may lead to improved sensitivity for lesion detection on digital mammograms both 
by radiologists and by the computer. 

We are developing two-view information fusion method for correlating lesion 
detection and characterization on the CC and MLO views of mammograms, similar to 
radiologists' approach for mammographic interpretation. A regional registration technique 
is being developed to correlate the locations of the same lesion on different views. In this 
method, the nipple is used as the landmark for alignment of the breast images from the two 
views in a polar coordinate system. In this project year, we investigated methods to 
automatically detect the nipple location on a mammogram.   We found that our current 
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method can identify about 85% of the nipples within 1 cm of the true location marked by 
radiologists. This result is promising although further improvement is still needed. 

We are also developing computer-vision methods for classification of malignant and 
benign masses. Both single-view classification and two-view classification are being 
studied. In this project year, we performed a study to compare the classification accuracy 
with single-view and fused two-view information and the effects of CAD on radiologists' 
characterization of masses. We found that the two-view fusion can improve the classifier's 
accuracy, and that CAD can significantly improve radiologists' accuracy in characterization 
of malignant and benign masses. These results showed that CAD may be useful for 
reducing unnecessary biopsies. 

In summary, we have investigated a number of areas in CAD of mammographic 
lesions. We have made progress in the six tasks proposed in the project. This lays the 
strong foundation for us to continue the development of the CAD systems for digital 
mammograms and digitized film mammograms in the coming years. 
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1. Wei J, Chan HP, Helvie MA, Roubidoux MA, Sahiner B, Hadjiiski L, Zhou C, 
Paquerault S, Chenevert T, Goodsitt MM. Correlation between Mammographic Density 
and Volumetric Fibroglandular Tissue Estimated on Breast MR Images. Medical 
Physics 2004; 31: 933-942. 

Conference Proceedings; 

1. Chan HP, Sahiner B, Hadjiiski LM, Petrick N, Zhou C. Design of three-class classifiers 
in computer-aided diagnosis: Monte Carlo simulation study. Proc SPIE 5032; 2003: 
567-578. 

2. Hadjiiski L, Chan HP, Sahiner B, Helvie MA, Roubidoux MA, Blane C, Paramagul C, 
Petrick N, Bailey J, Klein K, Foster M, Patterson S, Adler D, Nees A, Shen J. ROC 
study: Effects of computer-aided diagnosis on radiologists' characterization of 
malignant and benign breast masses in temporal pairs of mammograms. Proc SPIE 
5032; 2003: 94-101. 
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APPENDIX   1 

Correlation between mammographic density and volumetric fibroglandular 
tissue estimated on breast MR images 

Jun Wei,^' Heang-Ping Chan, Mark A. Helvie, Marilyn A. Roubidoux, Berkman Sahiner, 
Lubomir M. Hadjiiski, Chuan Zhou, Sophie Paquerault, Thomas Chenevert, and 
Mitchell M. Goodsitt 
Department of Radiology, University of Michigan, Ann Arbor, Ann Arbor, Michigan 49109 

(Received 18 June 2003; revised 26 November 2003; accepted for publication 21 January 2004; 
published 26 March 2004) 

Previous studies have found that mammographic breast density is highly correlated with breast 
cancer risk. Therefore, mammographic breast density may be considered as an important risk factor 
in studies of breast cancer treatments. In this paper, we evaluated the accuracy of using mammo- 
grams for estimating breast density by analyzing the correlation between the percent mammo- 
graphic dense area and the percent glandular tissue volume as estimated from MR images. A dataset 
of 67 cases having MR images (coronal 3-D SPGR Tl-weighted pre-contrast) and corresponding 
4-view mammograms was used in this study. Mammographic breast density was estimated by an 
experienced radiologist and an automated image analysis tool, Mammography Density ESTimator 
(MDEST) developed previously in our laboratory. For the estimation of the percent volume of 
fibroglandular tissue in breast MR images, a semiautomatic method was developed to segment the 
fibroglandular tissue from each slice. The tissue volume was calculated by integration over all slices 
containing the breast. Interobserver variation was measured for 3 different readers. It was found that 
the correlation between every two of the three readers for segmentation of MR volumetric fibro- 
glandular tissue was 0.99. The correlations between the percent volumetric fibroglandular tissue on 
MR images and the percent dense area of the CC and MLO views segmented by an experienced 
radiologist were both 0.91. The correlation between the percent volumetric fibroglandular tissue on 
MR images and the percent dense area of the CC and MLO views segmented by MDEST was 0.91 
and 0.89, respectively. The root-mean-square (rms) residual ranged from 5.4% to 6.3%. The mean 
bias ranged from 3% to 6%. The high correlation indicates that changes in mammographic density 
may be a useful indicator of changes in fibroglandular tissue volume in the breast. © 2004 Ameri- 
can Association of Physicists in Medicine.   [DOI: 10.1118/1.1668512] 

Key words: mammography, breast density, MR images, correlation 

I. INTRODUCTION 

Studies have shown that there is a strong positive correlation 
between breast parenchymal density imaged on mammo- 
grams and breast cancer risk.'"^ The relative risk is estimated 
to be about 4 to 6 for women whose mammograms have 
parenchymal densities over 60% of the breast area, as com- 
pared to women with less than 5% densities. Other cohort 
studies'*"'^ also found that breast cancer risk in the category 
with the most extensive dense tissue was 1.8 to 6 times as 
high as that in the category with the least extensive dense 
tissue. Mammographic density as the risk indicator is greater 
than almost all other risk factors of breast cancer.^'"* Al- 
though there is no direct evidence that changes in mammo- 
graphic breast densities will result in changes in breast can- 
cer risk, the strong correlation between breast density and 
breast cancer risk has prompted researchers to use mammo- 
graphic density for monitoring the effects of intervention as 
well as for studying breast cancer etiology.'*"'^ 

A number of researchers have investigated image 
analysis techniques to estimate breast density.'^-'^"^^ The 
common approaches are to analyze the textural pattern or the 
percentage of mammographic densities relative to the breast 
area. It has been found that the texture measures were corre- 

lated with parenchymal density patterns but they appeared to 
be less sensitive measures of relative risk than the percent 
dense area.''^^'^' In current practice, breast density is esti- 
mated mainly by radiologists' visual judgment of the fibro- 
glandular tissue imaged on mammograms following the 
Breast Imaging—Reporting and Data System (BI-RADS) 
lexicon.^"'^' Because of the qualitative and subjective nature 
of visual judgment, there are large intraobserver and interob- 
server variations in the estimated breast density. The large 
variability may reduce the observed correlation between 
breast cancer risk and breast density. It may also reduce the 
sensitivity of studies using mammographic density for moni- 
toring the effect of risk modifying treatments. We have de- 
veloped an automated image analysis system, Mammo- 
graphic Density ESTimator (MDEST), to assist radiologists 
in estimating breast density on mammograms. A computer- 
ized analysis is expected to increase the reproducibility and 
consistency in the estimation of mammographic density, 
thereby improving the accuracy of the related studies. In our 
previous study, we have found that the percent mammo- 
graphic density segmented by MDEST agreed closely with 
that estimated by radiologists' interactive thresholding.^^ 

The high correlation between breast cancer risk and breast 
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density indicates that breast cancer risk may be closely re- 
lated to the volume of glandular tissue in the breast. Among 
the modalities available for breast imaging at present, mag- 
netic resonance (MR) imaging is likely to be the most accu- 
rate method for volumetric dense tissue estimation because 
fibroglandular tissue and adipose tissue can be well distin- 
guished in MR images when a proper image acquisition tech- 
nique is used.''^ However, MR imaging is expensive, making 
it difficult to use MR imaging as a routine monitoring 
tool.^^'^* On the other hand, a mammogram is a two- 
dimensional (2-D) projection image of a three-dimensional 
(3-D) object. The area of dense tissue measured on a mam- 
mogram is not an accurate measure of the volume of fibro- 
glandular tissue in the breast because no thickness informa- 
tion is used. However, mammography is a widely available 
low cost procedure that may be used for monitoring breast 
density change during preventive and interventional treat- 
ment or other studies. Women who participate in screening 
will also have mammograms readily available for retrospec- 
tive review. Therefore, mammography will most likely be the 
method of choice for breast density estimation. 

In this study, we investigated the correlation between the 
volumetric fibroglandular tissue in the breast and the pro- 
jected breast dense area on mammograms by analyzing the 
percent volumetric fibroglandular tissue in MR breast images 
and the percent dense area in corresponding mammograms. 
Our purpose in this study is not to evaluate the usefulness of 
either MR fibroglandular tissue volume or mammographic 
density as an indicator for breast cancer risk, which have 
been studied by other investigators. Rather, we used the MR 
breast images to estimate the volumetric fibroglandular tissue 
in the breast and explored the reason that a change in mam- 
mographic density (2-D) can be used as an indicator of breast 
density change (3-D). These comparisons will provide a bet- 
ter understanding of their relationship, and may lead to im- 
proved methods for utilizing mammographic density as a 
surrogate marker for breast cancer risk. 

II. MATERIALS AND METHOD 

A. Dataset 

In a previous study, gadolinium contrast enhanced MR 
dynamic imaging was employed to characterize malignant 
and benign breast lesions. A dataset was collected with IRB 
approval which included MR images and corresponding 
mammograms acquired between detection and before biopsy 
for a given patient. In the MR study, several series of images 
were acquired for each patient. Patients were scanned prone 
using a commercial dual phased-array breast coil. The imag- 
ing protocol included a series was the coronal 3-D Tl- 
weighted pre-contrast series (coronal sections 2-5 mm thick, 
32 slices; 3-D Spoiled Gradient-Recalled Echo (SPGR); TE 
= 3.3 ms; TR=10ms, Flip=40°, matrix=256X128, FOV 
= 28-32 cm right/left, 14-16 cm superior/inferior, scan 
time=2 min 38 sec). This 3-D SPGR sequence produces fiill 
volume coverage of both breasts with contiguous image sec- 
tions. The dense parenchyma and fat tissue are well sepa- 
rated with this heavily Tl-weighted acquisition. We used a 

set of 67 patients to study the correlation between the 2-D 
projected percentage of dense area on a mammogram and the 
percentage of dense tissue volume estimated from the 3-D 
MR images. 

The mammograms consisting of the craniocaudal (CC) 
view and the mediolateral oblique (MLO) view of both 
breasts of the patient were digitized with a LUMISYS 85 
laser film scanner at a pixel size of 50 /jumXSO fMta. The 
digitizer has a gray level resolution of 12 bits and a nominal 
optical density (O.D.) range of 0 to 4. For density segmen- 
tation, it is not necessary to use very high-resolution images. 
To reduce processing time, the full resolution mammograms 
were first smoothed with a 16X16 box filter and subsampled 
by a factor of 16, resulting in 800 /xmX 800 /xm images for 
this study. 

B. Estimation of fibroglandular tissue volume on MR 
images 

Since it is not our intention to routinely segment MR im- 
ages for breast density estimation, we did not attempt to 
develop an automated method for this application. Our algo- 
rithm for segmentation of volumetric fibroglandular tissue on 
MR images used a semi-automatic method. The computer 
performed an initial segmentation. A graphical user interface 
(GUI) was developed to allow a user to review the segmen- 
tation of every slice and make modifications if necessary. 
The method consists of four steps. First, the breast boundary 
was detected automatically on each slice. A deformable 
model and manual modification were used to correct for in- 
correctly detected boundaries that usually occurred in slices 
near the chest wall where there were no well-defined breast 
boundaries. Because of inhomogeneity of the breast coil sen- 
sitivity, the signal intensity in the breast region was not uni- 
form across the field of view. A background correction tech- 
nique that estimated the low frequency background from the 
gray levels along the breast boundary was developed to re- 
duce this systematic nonuniformity. Manual interactive 
thresholding of the gray level histogram in the breast region 
was then used to separate the fibroglandular from the fatty 
region. Morphological erosion was used to exclude the skin 
voxels along the breast boundary. Finally, the volume of fi- 
broglandular tissue was calculated by integration over all 
slices containing the breast. A flow chart of our algorithm is 
shown in Fig. 1. 

C. Breast boundary detection 

A two-step algorithm was developed for the detection of 
breast boundary on each slice. First, we used a seeded pixel 
thresholding algorithm (SPTA) for the initial assessment of a 
breast boundary. Second, a 2-D active contour algorithm fur- 
ther refined the boundary. For slices close to the chest wall 
where no clear boundary can be seen, manual modification 
was used to outline an estimated boundary. 

The SPTA determined the optimal threshold by iteratively 
partitioning the MR image into two parts and using the gra- 
dient value along the boundary of the partition as a guide in 
optimizing the threshold. First, the center of gravity was se- 

Medical Physics, Vol. 31, No. 4, April 2004 



935 Wei et al.: Correlation of density between mammography and MR images 935 

/\ 

S 

C MR Sliced 

Breast Boundary Detection 
(with manual coitectbn) 

Background Correction 

I      =: 
Gray Level Thresholding 

Morphological Erosion 
(for exclusion of skin) 

Fibroglandular Tissue 
Volume Over All Slices 

Percent Fibroglandular 
Tissue Volume 

FIG. 1. The flow-chart for the segmentation of the fibroglandular tissue on 
MR images. 

FIG. 2. An example of the first three processing blocks in Fig. 1. (a) Original 
MR slice; (b) automatically-detected breast boundary superimposed on the 
image; and (c) the background-corrected image. 

^exert= Wgrad^gradCc) + Wbal^^balCc), (3) 

where curv, cont, grad, bal, horn denoted curvature, continu- 
ity, gradient, balloon force and homogeneity, respectively, 
and each energy term was associated with a weight, w. The 
detailed definition for each term can be found in the 
literature.''^ An example of a MR slice of a breast is shown in 
Fig. 2(a), and the segmented boundary is shown in Fig. 2(b). 
Note that the two breasts of a patient were scanned together 
but each breast was analyzed separately. 

lected as the starting pixel on each slice. The gray level of 
the starting pixel was used as a threshold to create a binary 
partition of the image in which all pixels greater than the 
threshold were set to one and all other pixels were set to 
zero. Second, the gradient value of each pixel on the bound- 
ary of the binary partition was calculated by applying the 
Sobel filter to the original image. The gradient assessment 
for this particular binary partition was defined as the average 
gradient magnitude of these boundary pixels. The threshold 
value was reduced to zero in a stepwise manner. The parti- 
tion for each threshold value was created and the gradient 
assessment for each partition was calculated as described 
above. The partition with the maximum gradient assessment 
was considered to be the initial segmentation result for the 
breast, and the boundary of this partition was considered to 
be the initial breast boundary. 

After the initial segmentation, a deformable contour 
method was used to further refine the boundary. The move- 
ment of the boundary pixel was controlled by an energy 
function which consisted of internal energy and external en- 
ergy. The intemal energy components used in this study were 
the continuity and curvature of the contour, as well as the 
homogeneity of the segmented partition. The external energy 
components were the negative of the smoothed image gradi- 
ent magnitude, and a balloon force that exerted pressure at a 
normal direction to the contour. The energy function was 
defined as the following: 

£■=2   [£inter(c) + £'exert(<^)]. (1) 

where EjnteV and Eg^^^ are the intemal energy and the external 
energy, respectively, as defined in Eq. (2) and Eq. (3): 

^inter= ^curv^curvC*^) + W'<,ont£cont(<^) + W'hom^hom. (2) 

L     R      U     D 1111 
 (- \ H   L __ _l.         , J  

d,    d,    d,    dj\ 1 \di    d,    d,    d, 

D. Background correction 

To reduce the nonuniformity of the MR signal intensity in 
the breast region, a background correction technique''* using 
the pixel values around the segmented breast region was em- 
ployed. For a given pixel (ij) inside the breast region, the 
gray value of the background image was estimated as shown 
in Eq. (4): 

B{iJ) = 
U] Mr t*i( W/// W/ Wr Wiy *♦// 

(4) 

where L, R, U and D are the average gray values inside a 
breast background estimation region (BEER) centered at the 
left, right, upper and lower pixels on the breast boundary, 
respectively. A BBER was defined as the intersection of a 
21X 21-pixel box and the breast region. The center pixels for 
the left and right boxes were the intersection points between 
the breast boundary and a horizontal line passing through the 
given pixel (ij). Similarly, the upper and lower center pix- 
els for the upper and lower boxes were the intersection points 
between the breast boundary and a vertical line passing 
through the given pixel (i,j). Only the pixels that were 
within the intersected area between the 21X 21-pixel box and 
the breast region were included in the definition of the BBER 
and the calculation of the average gray value. The contribu- 
tions of the average gray levels to the background pixel (iJ) 
were inversely weighted by their distances di,dr,du,dj 
from the given pixel («',;'). An example of the background 
corrected image is shown in Fig. 2(c). 

E. Segmentation of fibroglandular tissue 

We developed a GUI that allowed the user to perform a 
combination of manual and automatic operations to segment 
the breast boundary and the fibroglandular tissue on the MR 
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FIG. 3. The graphic user interface for 
the segmentation of the fibroglandular 
tissues on the MR slice. The upper 
row shows the original MR slice (left), 
the background-corrected image 
(middle) and the segmented binary im- 
age (right). The segmented image re- 
sponds to the reader's adjustment of 
the gray level threshold (lower row) in 
real time so that the reader can choose 
the appropriate threshold by mspecting 
the segmented image visually. The 
dark area in the segmented image in- 
dicates the fibroglandular tissue and 
the white area indicates the adipose 
tissue. The inner line along the breast 
boundary is the boundary obtained by 
morphological erosion to exclude the 
skin voxels for calculating the fibro- 
glandular tissue volume. 

images. The first window (not shown) displayed the MR se- 
ries and the corresponding mammogram of each breast to 
give the user an overview of the breast. The segmentation of 
the fibroglandular tissue on each MR slice was processed in 
the second window, shown in Fig. 3. The original MR slice, 
the corresponding background corrected image and the seg- 
mented binary image were shown in the upper part of the 
window. At the lower part of the window, the histogram of 
the voxel values in the breast region was shown. The user 
performed interactive thresholding on the histogram and the 
segmented binary image corresponding to the chosen thresh- 
old was displayed in real time in the upper part. If the breast 
boundary, which was automatically segmented by the com- 
puter initially, had to be corrected, the user could go to the 
third window and manually move the apices of the polygon 
outlining the boundary. The voxels contributed by the nipple 
were excluded. On the slices containing breast skin that had 
voxel values similar to those of fibroglandular tissue, a mor- 
phological erosion operation was applied to the breast 
boundary to exclude the skin voxels from the calculation of 
the fibroglandular tissue volume in the slice. The size of the 
structuring element could be selected interactively on the 
fourth window and the eroded boundary was displayed in- 
stantly for a chosen erosion operation. The user might again 
change the structuring element if the erosion result of the 
previous choice was deemed unsatisfactory. Since the eroded 
boundary only marked the region within which the fibroglan- 
dular voxels would be summed and would not be used for 
the calculation of the breast volume, as described below, it 
did not need to be precise as long as it excluded the skin 
voxels while not excluding the fibroglandular voxels. 

F. MR fibroglandular tissue volume 

After the fibroglandular tissue was segmented for each 
slice, the total number of voxels containing the fibroglandu- 
lar tissue was obtained as a summation of these voxels over 
all slices of the breast. The total volume of the breast was 
obtained as the summation of the voxels enclosed by the 
breast boundary before morphological erosion. The ratio of 
these two volumes provided the percent volumetric fibro- 
glandular tissue in the breast. 

G. Mammographic density segmentation 

We have previously developed an automated method for 
segmentation of the dense fibroglandular area on mammo- 
grams. The method, referred to as the Mammographic Den- 
sity ESTimator (MDEST) was described in detail 
elsewhere.^^ In brief, the breast boundary on the digitized 
mammogram is tracked. A dynamic-range compression tech- 
nique reduces the gray level range of the breast area. By 
analyzing the shape of the gray level histogram, a rule-based 
classifier classifies the breast density into one of four classes. 
Typically, a Class I breast is almost entirely fat; it has a 
single narrow peak on the histogram. A Class II breast con- 
tains scattered fibroglandular densities. Its histogram has two 
main peaks, with the smaller peak on the right of the bigger 
one. A Class HI breast is heterogeneously dense. Its histo- 
gram also has two peaks, but the smaller peak is on the left 
of the bigger one. A Class IV breast is extremely dense. Its 
histogram has mainly a single dominant peak, but the peak is 
wider compared with the peak in the Class I histogram. A 
second smaller peak sometimes occurs on the left of the 
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FIG. 4. A comparison of the percent mammographic 
density obtained from interactive thresholding by an 
MQSA-qualified radiologist and that estimated by our 
automated MDEST computer program, (a) CC view, 
correlation coefficient= 0.90, rms residual=6.7, mean 
difference=0.3; (b) MLO view, correlation coefficient 
= 0.89, rms residual=6.1, mean difference=0.4. 
Dashed line: linear regression of the data; solid line: 
diagonal. 

main peak. Based on the histogram shape, a threshold is 
automatically calculated to separate the dense and fatty pix- 
els. The mammographic density was estimated as the per- 
centage of fibroglandular tissue area relative to the total 
breast area. For MLO view mammograms, the pectoral 
muscle is detected and excluded from the density area or 
breast area calculations. In oiu- previous work, the perfor- 
mance of MDEST was verified by comparison with manual 
segmentation by 5 breast imaging radiologists using a dataset 
of 260 mammograms from 65 patients that were different 
from the cases used in the current study. We found that the 
correlation between the computer-estimated percent dense 
area and the average segmentation by the 5 radiologists was 
0.94 and 0.91, respectively, for CC and MLO views, with a 
mean bias of less than 2%. 

MDEST was applied to the mammograms of the 67 pa- 
tients used in this study. The percent dense area on mammo- 
grams was estimated for the CC-view and the MLO-view 
mammogram of each breast separately. In addition, an 
MQSA-qualified radiologist also segmented the dense area 
by interactive thresholding for each mammogram. The cor- 
relation between the mammographic density obtained by 
manual and automatic segmentation is shown in Figs. 4(a) 
and 4(b) for the CC view and MLO view, respectively. The 
correlation coefficients for the CC view and MLO view were 
0.90 and 0.89, respectively. The mammographic densities es- 
timated by automatic and manual segmentation were com- 
pared with the percent volumetric fibroglandular tissue on 
MR images as described below. 

H. Observer experiments 

We performed an experiment to evaluate the variability of 
the estimated % volumetric fibroglandular tissue due to the 
uncertainty in the determination of the sliarting slice of the 
breast at the chest wall. The starting slice affected the esti- 
mation of the breast volume that was calculated by integrat- 
ing from the starting slice to the anterior of the breast. 
Twenty-three MR cases from the dataset were randomly se- 
lected for this observer experiment. There were a total of 41 
breasts because some cases had only one breast. For this 
subset of cases, each radiologist was asked to select the start- 
ing slice from the MR images for each breast. The estimated 

% volumetric fibroglandular tissue calculated with all avail- 
able slices was then compared to that calculated with the 
selected starting slice. 

We also performed observer experiments to evaluate the 
inter-observer variations in the segmentation of fibroglandu- 
lar tissue using the semi-automatic method. Two MQSA- 
qualified radiologists performed the segmentation of the fib- 
roglandular tissue on the MR images of the 41 breasts using 
the semi-automatic method implemented with the GUI. A 
Ph.D. researcher who was trained by these radiologists also 
performed the segmentation independently with the GUI. 

After verifying the consistency of segmentation by these 
observers, the trained Ph.D. completed the segmentation of 
all MR cases. The correlation between percent volumetric 
fibroglandular tissue on MR images and percent dense area 
on mammograms was then examined for the entire dataset. 

III. RESULTS 

A. Effect of selection of the starting slice 

Figure 5(a) shows the correlation of the % volumetric 
fibroglandular tissue calculated using all available slices for 
the breast with that calculated using the selected starting 
slice by radiologist A for the 41 breasts. The correlation co- 
efficient was 0.999. To compare the difference between their 
results, the mean difference and the root-mean-square (rms) 
residual, which is the residual from the linear least-squares- 
fitted line, were also calculated. The mean difference was 0.7 
and the rms residual was 0.6. The result is similar for radi- 
ologist B (not shown), with a correlation coefficient of 0.999, 
a mean difference of 0.4 and a rms residual of 0.4. The 
correlation between the % volumetric fibroglandular tissue 
calculated using the selected starting slice by radiologist A 
with that calculated using the selected starting slice by radi- 
ologist B was also very high with a correlation coefficient of 
0.988, a mean difference of 0.7 and a rms residual of 1.8, as 
shown in Fig. 5(b). These comparisons indicated that the 
variability in the selection of the starting slice of the breasts 
did not have a strong influence on the % volumetric fibro- 
glandular tissue. We therefore used all available slices in the 
MR dataset for each breast in the following analyses. 
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FIG. 5. (a) A comparison of the percent fibroglandular 
tissue volume calculated using the selected starting 
slice with that calculated using all available slices for 
radiologist A, correlation coefficient= 0.999. (b) A com- 
parison of the percent fibroglandular tissue volume cal- 
culated using the selected starting slice by radiologist B 
with that by radiologist A, con'elation coefficient 
= 0.988, Dashed line: linear regression of the data; 
solid line: diagonal. 

B. Inter-Observer variation between radiologists 

Figure 6(a) shows the comparison of the percent volumet- 
ric fibroglandular tissues on MR images segmented by two 
radiologists for the 41 breasts. The correlation between the 
segmentation results of the two radiologists is 0.99. The 
mean difference was found to be 0.3 and the rms residual 
was 1.6. 

C. Inter-observer variation between radiologists and 
trained Ph.D. 

Figure 6(b) shows the comparison of the percent volumet- 
ric fibroglandular tissues segmented by the trained Ph.D. 
against that segmented by radiologist A. A similar result was 
obtained by comparing the percent volumetric tissue seg- 
mented by the trained Ph.D. and that segmented by radiolo- 
gist A except that the data points were even closer to the 
diagonal (not shown). The correlation between the result of 
the trained Ph.D. and the results of both radiologists was 
0.99. The corresponding mean differences were —0.8 and 
— 0.4, respectively, and the rms residuals were 1.4 and 1.5, 
respectively. 

D. Correlation between percent volumetric 
fibroglandular tissue on IVIR images and percent 
mammographic density 

The percent volumetric fibroglandular tissue on MR im- 
ages was compared with the percent dense area on CC- and 

MLO-view mammograms. After verifying that the difference 
in segmentation between the trained Ph.D. and the radiolo- 
gists was similar to the interobserver variations between the 
two experienced radiologists, the trained Ph.D. completed 
the segmentation of the entire dataset. 

Figure 7 shows the comparison of the percent volumetric 
fibroglandular tissue on MRI and the percent mammographic 
density segmented by a radiologist. The percent areas on CC- 
and MLO-view mammograms are higher than the percent 
volume on MR images with a mean difference of 5.7% and 
3.0%, respectively. 

Figure 8 shows the comparison of the percent volumetric 
fibroglandular tissue on MRI and the percent mammographic 
density segmented by MDEST. The percent areas on CC- 
and MLO-view mammograms segmented by the computer 
are higher than the percent volume on MR images with a 
mean difference of 5.3% and 2.6%, respectively. 

The correlation coefficients, the mean differences and the 
rms residuals between the percent volumetric fibroglandular 
tissue on MR images and percent dense area on mammo- 
grams are compared in Table. L The correlation between the 
percent volume on MR images and percent area on mammo- 
grams of the fibroglandular breast tissue is high, ranging 
from 0.89 to 0.91. Although it is not expected that the values 
of percent volume agree with the values of percent area, their 
mean differences range only from 3% to 6% and the rms 
residual range from 5.4 to 6.3. 
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FIG. 6. A comparison of the segmentation of fibroglan- 
dular tissue fi"om MR images between two observers: 
(a) two experienced MQSA-qualified radiologists, cor- 
relation coefficient=0.99. (b) The trained Ph.D. and 
Radiologist A, correlation coefficient=0.99. The corre- 
lation between the trained Ph.D. and Radiologist B is 
also 0.99 but the data points were very close to the 
diagonal and is not shown. The % volumetric fibroglan- 
dular tissue was calculated using all available slices. 
Dashed line: linear regression of the data; solid line: 
diagonal. 
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FIG. 7. A comparison of the percent fibroglandular tis- 
sue volume on MR images and the percent dense area 
on mammograms segmented by an experienced radiolo- 
gist, (a) CC view, correlation coefficient=0.91; (b) 
MLO view, correlation coefficient=0.91. Dashed line: 
linear regression of the data; solid line: diagonal. 

IV. DISCUSSION 

Our purpose in this paper was to investigate the relation- 
ship between the percent dense area on mammogram and the 
percent fibroglandular tissue volume on MR image. We 
found a direct correlation between mammographic density 
and MR volumetric density (Fig. 7 and Fig. 8). The correla- 
tion coefficients between the percent area on a mammogram 
and the percent volume on MR images are high at 0.89 and 
0.91. These results are more promising than those found in 
previous studies that attempted to correlate percent dense 
area on mammograms with MR information. Graham et al?^ 
investigated the relationship between percent density (pro- 
jected dense area) on mammogram and two objective MR 
parameters of breast tissue, relative water content and mean 
T2 relaxation. Their results with 45 cases showed a positive 
correlation between percent density and relative water con- 
tent (Pearson correlation coefficient= 0.79) and a negative 
correlation between percent density and mean T2 value 
(Pearson correlation coefficient= -0.61). Another study by 
Lee et al}* analyzed fatty and fibroglandular tissue in differ- 
ent age groups to compare x-ray mammography with Tl- 
weighted MR images. Their study with 40 cases indicated 
that the correlation between the two techniques is 0.63 when 
the fat content was more than 45%. However, the correlation 
coefficient decreased to 0.34 when their analysis included 
only dense breasts. 

It may be noted that although MR imaging is currently the 
most accurate method for estimating the volumetric fibro- 

glandular tissue in the breast, it is still not the ideal tool. 
Fibrous tissue and glandular tissue are not well separated 
with current MR imaging techniques. Since the amount of 
glandular tissue in the breast is the important factor relating 
to breast cancer risk, further studies are warranted for differ- 
entiating the glandular and the fibrous components of the 
imaged volume. The correlation between the percent glandu- 
lar tissue volume and percent projected dense area on a 
mammogram will be a more reliable indicator of the useful- 
ness of mammographic density analysis. 

The density on mammograms is a 2-D projected area of 
the fibroglandular tissues. The percent dense area is not ex- 
pected to be equal in value to the percent volume. The mean 
differences between the percent volume and the percent area 
on CC- and MLO-views, as determined by the radiologist's 
interactive segmentation, are 5.7 and 3.0, respectively (Table 
I), with the percent dense area values being higher. We also 
investigated the rms residual between the percent volume 
and the percent area when the relationship between them was 
assumed to be linear. The rms residual between the percent 
volume and the percent area on CC- and MLO-views are 6.3 
and 5.6, respectively (Table I), relative to the straight line 
obtained from linear least squares fits to the data. One pos- 
sible factor that may contribute to a higher value of percent 
dense area on mammograms than the percent volume value 
on MR images is that the tissue volume imaged by the two 
modalities is somewhat different. The MR images include 
more tissue near the chest wall, which is mainly retroglan- 
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FIG. 8. A comparison of the percent volume on MR 
images and the percent area on mammogram segmented 
by our automated MDEST computer program, (a) CC 
view, correlation coefficient=0.91; (b) MLO view, cor- 
relation coefficient=0.89. Dashed line: linear regres- 
sion of the data; solid line: diagonal. 
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TABLE I. Statistic analysis of the relationship between percent fibroglandular 
tissue volume on breast MR images and percent dense area on mammo- 
grams segmented by radiologist and MDEST. 

Radiologist Computer (MDEST) 

CCvs 
MRI 

MLO vs 
MRI 

CCvs 
MRI 

MLOvs 
MRI 

Correl. coeff. 
rms residual 
Mean diff. 

0.91 
6.3 
5.7 

0.91 
5.6 
3.0 

0.91 
5.8 
5.3 

0.89 
5.4 
2.6 

dular adipose tissue, than a mammogram does, thus reducing 
the percentage of fibroglandular tissue volume. The reduc- 
tion in the percent volume values, however, is relatively 
small, as found in our study evaluating the effects of select- 
ing starting slices for volume calculation (Fig. 5). The main 
difference may therefore be attributed to the geometric rela- 
tionship between the volume and the projected 2-D area, 
explained later. 

Geometrically, we do not expect the relationship between 
volume and its projected 2-D area to be linear. In a hypo- 
thetical situation such that the dense tissue volume is a 
sphere (volume=4/3 irr^) enclosed inside a concentric 
spherical shell of fatty tissue volume, the percent projected 
2-D area (area= Trr^) of the inner sphere relative to the 
outer sphere is equal to the percent volume to the power of 
2/3. The relationship between the percent area and the per- 
cent volume is therefore not linear, and the percent area is 
larger in value than the percent volume for any ratio of radii 
between the two spheres. In general, the compressed breast 
and the dense tissue are not spherical. To investigate the 
empirical relationship between the percent area and the per- 
cent volume in the nonlinear situation, we applied least 
squares fits in several polynomial models to the data points 
in Fig. 7. The results are shown in Table II and Fig. 9. A 
comparison of Table I and Table n indicates that the Y 
= kx^^ model (x = percent fibroglandular tissue volume, Y 
= percent mammographic dense area) resulted in slightly 
larger rms residuals than the linear model. The model Y 
= kx"' with m equal to 0.83 and 0.86, respectively, for CC- 
and MLO-views slightly reduced the rms residuals. The best 
fit was obtained from the model Y=k^x'" + k2. However, the 

TABLE II. An analysis of the relationship between percent fibroglandular 
tissue volume {x) on breast MR images and percent dense area {Y) on 
mammograms segmented by radiologist using three mathematical models, 
m, t 

Mathematical model Y=kx^ Y=kx'" Y=kiX"' + k2 

cc Least squares Fit y=0.821^ K=1.03;t''" }'=1.02x°''*-0.19 
vs rms residual 6.5 6.0 5.6 

MRI Coefficient of 
determination 

0.82 0.85 0.87 

MLO Least squares Fit Y=fimx^ }'=0.96x''"' l'=0.90;<:°'°-0.09 
vs rms residual 6.0 5.5 5.3 

MRI Coefficient of 
determination 

0.80 0.84 0.85 

situation that the percent projected area was negative when 
the percent volume was zero would not occur physically. 
Note that if the model was fitted to the percent area data 
segmented by MDEST (Fig. 8), the ki values would become 
positive, indicating that the nonzero ki values are likely 
caused by segmentation biases. 

Overall, these models demonstrate that there is no simple 
mathematical relationship between the percent volume and 
the percent projected area but the values for the exponents 
appeared to be in a reasonable range. The relationship be- 
tween the percent volumes of two 3-D objects, one within 
another, and their percent projected 2-D area depends on 
their shapes. For example, the closer the two volumes are to 
concentric cylinders of the same height, the closer the expo- 
nent is to unity. The spread of the data points can therefore 
be attributed to the various irregular shapes of the fibroglan- 
dular tissue in the breasts, the changes in the shapes of the 
fatty and fibroglandular tissue due to compression, as well as 
the uncertainties in the segmentation of both the mammo- 
grams and the MR images. Although the spread of the data 
points in the correlation plots is large, one can expect that 
when the mammographic density of a given patient is moni- 
tored over time, the variations in the projected dense area 
due to the geometric factors, described above, will actually 
be much less than that observed from the scatter plots among 
a large number of patients. In other words, the uncertainty in 
the estimated percent density from the serial mammograms 
of a given patient should be much less than those shown in 
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Fig. 7. The strong correlation observed between the percent 
dense area on mammograms and the percent volumetric fib- 
roglandular tissue on MR images therefore indicates that a 
change in mammographic density can be a useful indicator 
of a change in percent fibroglandular tissue volume in the 
breast. 

Recently, some researchers attempted to estimate the 
thickness of the fibroglandular tissue in local regions of the 
mammograms from the projected density.^^ This approach is 
expected to provide a more accurate estimation of the fibro- 
glandular tissue volume if the true thicknesses of the fibro- 
glandular tissue and fatty tissue can be determined at various 
locations of the projected breast region. The volume of the 
fibroglandular tissue can then be summed over the pixels in 
the breast region and the percent volume calculated. How- 
ever, to obtain accurate measurements, this approach requires 
the knowledge of the sensitometric curve for the screen-film 
mammogram at the imaging facility (or use of a digital de- 
tector with linear response) and other physical parameters 
such as the scatter fraction, the beam quality and beam hard- 
ening, in addition to the compressed breast thickness and the 
breast shape profile at the periphery. Some of the require- 
ments may be circumvented by using a look-up table prede- 
termined with a phantom calibration. Other factors may have 
to be approximated or ignored, or require further corrections 
by imaging each mammogram with a calibration phantom 
placed adjacent to the breast. This method is still being de- 
veloped and the accuracy of estimating the thickness of the 
local fibroglandular tissue from a mammogram is yet to be 
determined. To our knowledge, no study to date has demon- 
strated that fibroglandular tissue volume estimated from 
mammograms has a higher correlation with the percent volu- 
metric fibroglandular tissue volume estimated from MR im- 
ages or other volumetric methods than we found in our cur- 
rent study. Furthermore, even if the local fibroglandular 
tissue thickness on mammograms can be measured in a labo- 
ratory or in an academic center using elaborate calibration 
schemes, it is doubtful that these methods can be translated 
into routine clinical measurement in mammography clinics. 
Its use may then be limited to controlled clinical trials. An 
estimation of the percent dense area projected on mammo- 
grams is likely a more practical approach for breast density 
assessment. The high correlation between the percent dense 
area and the percent fibroglandular tissue volume on MR 
images as demonstrated in the current study further supports 
the validity of this approach. 

V. CONCLUSION 

In this study, we investigated the correlation between the 
percent mammographic dense area and the percent volumet- 
ric fibroglandular tissue as measured on MR images. A semi- 
automatic method was developed for segmentation of the 
MR images and a fully automated computerized method, 
MDEST, was used to segment the mammograms. The per- 
formance of MDEST on the set of mammograms used in this 
study was verified with an experienced radiologist's manual 
segmentation. The inter-observer variability in segmentation 

of MR images was found to be small with correlation coef- 
ficients of 0.99. The correlation between the percent volume 
on MR images and percent area segmented by a radiologist 
for either CC- view or MLO-view is 0.91. The correlation 
between percent volume and percent area estimated by MD- 
EST is 0.91 and 0.89, respectively, for CC and MLO views. 
Mammographic density is thus highly correlated with the 
percent volumetric fibroglandular tissue in the breast. The 
high correlation indicates that changes in mammographic 
density may be a useful indicator of changes in fibroglandu- 
lar tissue volume in the breast. Our computerized image 
analysis tool, MDEST, can provide a consistent and repro- 
ducible estimation of percent dense area on routine clinical 
mammograms. The automated image analysis tool may im- 
prove the sensitivity of quantifying mammographic density 
changes, thereby contributing to the understanding of the re- 
lationship of mammographic density to breast cancer risk, 
detection, and prognosis, and the prevention and treatment of 
breast cancer. 
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ABSTRACT 

For the development of computer-aided diagnosis (CAD) systems, a classifier that can effectively differentiate 
more than two classes is often needed. For example, a detected object on an image may need to be classified as a 
malignant lesion, a benign lesion, or normal tissue. Currently, a three-class problem is usually treated as a two-stage, 
two-class problem, in which the detected object is first differentiated as a lesion or normal tissue, and, in the second 
stage, the lesion is further classified as malignant or benign. In this work, we explored methods for classification of an 
object into one of the three classes, and compared the three-class approach with the common two-class approach. We 
conducted Monte Carlo simulation studies to evaluate the dependence of the performance of 3-class classification 
schemes on design sample size and feature space configurations. A k-dimensional multivariate normal feature space 
with three classes having different means was assumed. Linear classifiers and artificial neural networks (ANNs) were 
examined. ROC analysis for the 3-class approach was explored under simplifying conditions. A performance index 
representing the normalized volume under the ROC surface (NVUS) was defined. Linear classifiers for classification of 
three classes and two classes were compared. We found that a 3-class approach with a linear classifier can achieve a 
higher NVUS than that of a 2-class approach. We further compared the performance of an ANN having three or one 
output nodes with a linear classifier. At large sample sizes, a 3-output-node ANN was basically the same as that of a 
one-output-node ANN. When the three class distributions had equal covariance matrices and the distances between pairs 
of class means were equal, the linear classifiers could reach a higher performance for the test samples than the ANN 
when the design sample size was small; the linear classifier and the ANNs approached the same performance in the limit 
of large design sample size. However, under complex feature space configurations such as the class means located 
along a line, the class in the middle was poorly differentiated from the other two classes by the linear classifiers for any 
dimensionality; the ANN outperformed the linear classifier at all design sample size studied. This simulation study may 
provide some useful information to guide the design of 3-class classifiers for various CAD applications. 

KEY WORDS: Computer-aided diagnosis, classifier design, 3-class classification, linear classifier, artificial neural 
networks, Monte Carlo simulation, likelihood ratio, ROC analysis 

1. INTRODUCTION 

For the development of computer-aided diagnosis (CAD) systems, a classifier that can effectively differentiate 
more than two classes is often needed. For example, in an automated lesion detection and characterization system, it 
will be important to differentiate malignant lesions from benign lesions and normal tissue. A common approach is to 
treat this as a two-stage classification problem having two classes at each stage; masses are distinguished fi-om normal 
tissue in the first stage, and then are classified as malignant and benign in the second stage. Alternatively, if the main 
interest is to detect only malignant lesions, a two-class classifier is trained to differentiate the malignant class from the 
combined class of the other two. The two classes that are treated as one may have very different characteristics and the 
classification may not be optimal if the classifier is forced to recognize their features as the same. For certain types of 
classification tasks, a properly designed 3-class classifier can be more effective in distinguishing one class from the other 
two classes. The design of 3-class classifiers has not been investigated systematically in the CAD area. In this work, we 
performed a simulation study to explore some properties of the 3-class and 2-class classification schemes. 
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Medical Imaging 2003: Image Processing, Milan Sonka, J. Michael Fitzpatrick, Editors, ^^^ 
Proceedings of SPIE Vol. 5032 (2003) © 2003 SPIE • 1605-7422/03/$15.00 



2. MATERIALS AND METHODS 

For an m-class classification problem in which a feature vector, x, is to be classified into one of m classes, a 
common approach is to apply the Bayes' rule to minimize the misclassification rate'. To accomplish this, the posterior 
probability of x belonging to class i is estimated as 

p,(c,|x) = g P(c,) p(x|c,), for I =1,..., m (1) 

where P(c,) is the prior probability of class c„ p(x|c,) is the probability density of x in class c,-, and g is a constant. The 
feature vector is then assigned to class k, where k denotes the class that x has the maximum posterior probability, 

* = argmax{/7,.(c, |x)} (2) 
1=1,...m 

However, it is difficult to estimate the posterior probability when the sample size is small. Furthermore, the 
misclassification rate does not take into account the fact that different types of misclassifications or correct 
classifications have different costs or utilities. A more general formulation of the m-class problem assigns a utility for 
each correct and incorrect decision, and optimizes the expected utility. The optimal decision rule depends on the 
utilities, as well as the prior probabilities of the classes. Let Pjj denote the probability of deciding class Cj when the true 
class is Cj, and Uy denote the utility of deciding class q when the true class is Cj. The optimal decision rule is the one that 
maximizes the expected utility, which can be written as 

E{utility} = ttu,jP,jPiCj) ^^^ 
;=i j=\ 

The limitation with the classifiers that maximize the correct classification rate or maximize the expected utility 
with fixed Uij's is that they do not cover the entire range of sensitivity and specificity for the classification task. A 
receiver operating characteristic (ROC) analysis will provide the entire range of operating points. However, a 3-class 
classification problem will require a six-dimensional (6-D) ROC analysis as follows. For a 3-class problem with classes 
a (malignant), b (benign), and n (normal), there are nine possible "decision-truth" Ij pairs and hence nine probabilities: 
PAB. Pfia, PNE, PAb, Pflb. PNb. PAH. Pfln. PNII- Siucc the sum of every three of these probabilities is unity, e.g., PAS + Pea + Pwa 
= 1, only six of the nine probabilities are independent. Therefore, the ROC analysis will include these six possible 
variables. 

For the 3-class problem, it has been shown that three decision lines that depend on two likelihood ratios (LRs) 
will provide the optimal decision boundaries on the LR plane as shown in Fig. V (C. E. Metz, private communication). 
The likelihood ratio between classes i and; is defined as the ratio of the probability density of x under each class, 

LR^(x) = p(x|c,)/p(x|c;) (4) 

In Fig. 1, the two LRs are chosen to be LRna and LRba. The slopes and intercepts of the decision lines in the likelihood 
ratio plane depend on the prior probabilities of the classes, as well as the utilities of the different types of decisions, UAO, 

Usa. UNS. UAb, Ufib, Unb. UAII. Ufin, UNH- The three decision lines always intersect at a common point. Varying the 
utilities and the priors over their allowed ranges will move the decision lines over the LR plane. For each configuration 
of the decision lines, the six probabilities can be estimated, producing a point in the 6-D ROC space. The complete 
treatment of a 6-D ROC analysis is therefore very complicated and has not yet been dealt with. In this study, we 
attempted to explore some properties of a 3-class problem under simplifying conditions. 

We assume that the utilities can take on values in [0,1]. For correct decisions, the utilities will have the 
maximum value of 1, i.e., UAE = Usb = UNI, = 1- If a malignant case is misdiagnosed as normal or benign, the utilities 
will be at a minimum of 0, Usa = Una = 0. If a normal case is called benign or vice versa, it may not be very harmful or 
costly so that the utilities UNb = UBD = L If a normal case or a benign case is called malignant, it will involve additional 
diagnostic tests or treatment and also cause patient anxiety or morbidity, the utilities UAb and UAH will be somewhere 
between 0 and 1. Under our assumptions that UAb and UAH are variable in (0,1) and the rest of the utilities are fixed as 
described above, it can be shown that two of the decision lines are reduced to one (Fig. 2), the third decision line 
becomes indeterminate, and the expected utility of the classification task in Eq. (3) depends only on three of the 
probabilities, PAS, PAb. and PAH.  The 6-D ROC analysis will therefore be reduced to a 3-D ROC analysis under these 

568     Proc. of SPIE Vol. 5032 



conditions. An example of the 3-D ROC surface is shown in Fig. 3. Note that PAS is the true-positive fraction (TPF) or 
the sensitivity, PAb is the false-positive fraction from the benign class (FPFb), and PAH is the false-positive fraction from 
the normal class (FPFJ. This 3-D ROC surface is therefore similar to the commonly used 2-D ROC curve except that 
the FPF is split into the benign and normal classes. In analogy with the 2-D ROC analysis, we can define a performance 
index as the normalized volume under the 3-D ROC surface (NVUS) given by 

...... ,   „^^^^     ^     ^^,T,^s    Volume under 3D ROC surface (5) 
Normalized volume under 3D ROC surface (NVUS) =  

Projected area on the FP plane 

Note that the NVUS can be interpreted as the average sensitivity over the range of FPF of interest, similar to the area 
under the 2-D ROC curve. 

Ideally, if the feature vectors are transformed onto the LR plane, one can vary the decision line and determine 
the samples that fall into the region that is decided to be class A. The probabilities PAS, PAB. and PAH can then be 
estimated and the 3-D ROC surface generated. However, when the sample size is small, it is difficult to estimate the 
probability densities and derive the LRs for each x. 

It is well-known that for the two-class classification problem in a k-dimensional feature space, the linear 
discriminant analysis projects the k-D feature space onto a 1-D decision axis. The decision boundary is then a threshold 
chosen along the decision axis. If the two class distributions are multivariate normal with equal covariance matrices, the 
linear discriminant classifier corresponds to the LR classifier and is optimal. This approach may be generalized to an m- 
class problem in a k-D feature space. In this case, the k-D feature space is projected to an (m-l)-D decision space, the 
decision boundaries are formed by (m-1) boundaries in the decision space'. For a 3-class problem (m=3), the k-D 
feature space is projected to a 2-D decision plane and the decision boundaries can be formed by two lines on the plane. 
In general, this projection is not optimal because it is not equivalent to a projection onto the LR plane. If the three class 
distributions are multivariate normal with equal covariance matrices, the linear transformation to a 2-D decision plane 
can be shown to be equivalent to a transformation to the log-likelihood ratio, ln(LR), plane and optimal decision 
boundaries can be formed on this plane. 

In this preliminary study, we studied the 3-class classification problem by linearly projecting the k-D feature 
space to the 2-D decision plane and used two linear decision boundaries for differentiating the malignant class from the 
benign and the malignant classes. The classification performance was evaluated in the 3-D ROC space as shown in Fig. 
3. 

The 3-class classification was compared to the approach of treating the benign and normal classes as one (b+n) 
class such that the differentiation of the malignant class (class a) from the (b+n) class was considered to be a 2-class 
classification problem. The k-D feature space was thus projected to the 1-D decision line by linear discriminant 
analysis. This is equivalent to forming a hyperplane in the k-D feature space to separate class a from class (b+n). 

We further assumed a simple k-D feature space in which the class distributions were multivariate normal, the 
covariance matrices for classes a, b, n were described by /, ctf, cd, respectively, where / was the identity matrix and a 
was a constant. The mean vectors for the three classes were located at the vertices of an equilateral triangle. These 
characteristics are invariant upon projection to the 2-D decision plane in the 3-class classification approach described 
above although the scales may be changed. The 2-D decision plane in the 3-class classification approach shown in Fig. 
4(a) and the example of the feature space in 2-D shown in Fig. 4(b) therefore have similar appearances. The symmetry 
of the class disfributions about the vertical axis simplifies our analysis that follows, but the approaches should be 
applicable to non-symmetrical feature spaces. 

For the 3-class classification approach, the slopes and intercepts of the linear decision boundaries were varied 
over the entire plane. For each set of boundaries, we could calculate the three probabilities, PAE, PAb. and PAH and 
generate a point in the 3-D ROC space. The surface formed by the highest sensitivity (PAS) at each FP location 
corresponded to the best decision boundaries. The NVUS was then derived from the highest sensitivity surface relative 
to its projected area on the FP plane. 
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For the 2-class classification approach with linear discriminant analysis, the best projection of the decision axis 
would be parallel to the symmetry (vertical) axis because of the symmetry of the class distributions. The decision 
boundary along this axis thus corresponded to a hyperplane perpendicular to the symmetry line. The decision boundary 
is illustrated as a horizontal line in the 2-D feature space (Fig. 4(b)). By moving the decision boundary along the 
decision axis and scoring the TPF and FPF, we could generate the 2-D ROC curve and derive the area under the ROC 
curve, Az. 

We compared the 3-class and 2-class approaches in two different ways. First, we compared the area under 
ROC curve under similar situations. For the 3-class approach and in oiu- feature space with symmetry, the slice of the 3- 
D ROC surface along the diagonal of PAb = PAO was equivalent to the situation of treating class b and class n equally, i.e., 
UAb = UAH- We calculated the area under the ROC curve obtained from this slice and compared it with the A^ obtained 
in the 2-class approach. In the second comparison, we modified the 2-class classification approach in the original k-D 
feature space. If we allowed the hyperplane to orient at an angle to the symmetry axis (the best projected decision axis 
in the linear discriminant analysis), it was similar to taking into consideration that there were different utilities of making 
FP decisions from class b or class n. For example, if the slope of the decision boundary was positive as shown in Fig. 
5(a), we were less concerned with deciding a class-b sample as class a than deciding a class-n sample as class a so that it 
implied UAb > UAH- On the other hand, if the slope of the decision boundary was negative as shown in Fig. 5(b), we were 
less concerned with deciding a class-n sample as class a than deciding a class-b sample as class a so that it implied UAb < 
UAH- Therefore, by varying the slope and intercept of the single decision boundary in the 2-class approach, we could also 
generate a 3-D ROC surface and calculate its NVUS. We then compared the NVUS obtained from the 3-class and 2- 
class approaches. 

Neural Network Classifiers 

Another common approach that is often applied to the m-class classification problem is to use an artificial 
neural network (ANN) classifier with (m-1) output nodes. During training, the desired output of a sample from the i* 
class is assigned 1 at the (* node and assigned 0 at all other nodes. Under ideal conditions (sufficiendy large training 
sample size and proper training), it has been shown that the ANN approaches a Bayes' classifier and the output for a 
given sample at the J"' node approaches the posterior probability of the sample in the i* class". Therefore, a properly 
trained ANN can be used for transforming the feature space to the LR plane and the 6-D ROC analysis applied. 
However, since the available design sample size is often limited in practice, the training of an ANN is usually far from 
being ideal. One of the common methods of analyzing the ANN output is to apply a 2-D ROC analysis to the scores of 
an individual output node, e.g., the j* node, to distinguish the j* class from the other classes. In this study, we evaluated 
the application of ANNs having one output node and three output nodes to the three-class problem. For training of the 
ANN with one output node, the desired output of the class-a samples was assigned to be 1 and those of the class-b and 
class-n samples were assigned to be 0. This is equivalent to treating the classification task as a 2-class problem without 
distinction between class b and class n. For training of the ANN with three output nodes, the desired output of a sample 
from the j* class (i=l, 2, 3) was assigned to be 1 at the i* node and 0 at all other nodes. Under ideal conditions, one of 
the output nodes is actually redundant because the output of the third node is complementary to the other two. For both 
the 1-output-node ANN and the 3-output-node ANN, we applied 2-D ROC analysis to the output node that distinguished 
class a from the other two classes and compared the A^ values. 

Simulation Study 

We performed a simulation study to evaluate the different approaches discussed above. For this study, we 
assumed that the three class distributions were multivariate normal with diagonal covariance matrices. In a given 
experiment, 1000 samples were randomly drawn from the population for each of the classes. A subset of Nuain trainers 
was randomly drawn from the 1000 available samples of each class and the rest, (1000-Ntrain). of the samples were held 
out as testers. N^-ain was varied from 20 to 600 per class for the linear classification study, and varied from 20 to 500 for 
the ANN study. For each condition, the experiment was repeated 50 times such that a new set of 1000 samples per class 
were drawn from the population. The dependence of the performance index, either A^ or NVUS, for each of the 
classification approaches on training sample size was evaluated. The ANNs were assumed to have one hidden layer with 
the number of hidden nodes equal to the number of input nodes. Backpropagation with a delta-bar-delta rule was used 
for training of the ANNs. 
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3. RESULTS 

For comparison of the 3-class and 2-class approaches using linear classification, we assumed a 12-D 
multivariate normal feature space with covariance matrices /, 8/, 8/ for class a, b, n, respectively. The comparison of A^ 
as a function of l/N^ain is plotted in Fig. 6. It can be seen that, for a given approach, when the design sample size is 
limited, the training (resubstitution) A^ is optimistically biased and the test (holdout) A^ is pessimistically biased, in 
comparison with the A^ at Ntrain^oo. The biases decrease as Ntrain increases. In the limit of Ntrain->oo, the training and 
test Az approach essentially the same value. The A^ obtained from the 3-class approach is consistendy higher than that 
from the 2-class approach for a given Nu^ain- 

Fig. 7 shows the comparison of the NVUS for the 3-class and 2-class approaches using linear classification in 
the same feature space. The characteristics of the curves are very similar to those observed in Fig. 6. The training 
NVUS is optimistically biased whereas the test NVUS is pessimistically biased compared to the limit achieved with 
large design sample size. The NVUS from the 3-class approach is again consistently higher than that from the 2-class 
approach for a given Ntrain- 

For the comparison of the 3-output-node and 1-output-node ANNs, we first assumed a k-D (k=3, 6, 9, 12) 
multivariate normal feature space with equal covariance matrices /, /, / for class a, b, n, respectively. The dependence of 
Az on 1/N,rain is shown in Fig. 8(a) for the 3-output-node ANN and in Fig. 8(b) for the 1-output-node ANN. The 
characteristics of the A^-versus-1/No^ain curves are very similar to those obtained in our previous study of 2-class 
classification problems'. The training A^ is optimistically biased and the test A^ is pessimistically biased compared with 
the Az values at Ntrain-^ oo. The biases increase with the dimensionality of the feature space for a given Nirain and 
decrease with increasing design sample size. It can be seen that the A^ values in the limit of Ntrain—>oo are very similar 
for the 3-output-node and the 1-output-node ANNs. For a given Nuain, the biases of the 3-output-node ANN are larger 
than those of the 1-output-node ANN for the high dimensional feature spaces, probably because of the larger number of 
weights that need to be trained in the 3-output-node ANN with the finite design samples. For comparison, we also 
trained a linear discriminant classifier to differentiate class a from class (b+n) and plotted the Az-versus-1/Ntrain curves 
in Fig. 8(c). The A^ values in the limit of Nrain->oo from the linear classifiers are again very similar to those from the 
ANNs. These results indicate that the 3-output-node or the 1-output-node ANNs is basically performing 2-class 
classification at each of its output nodes. It is interesting to note that, when Ntrain is small, the biases in A^ from the 
linear classifier are much smaller than those from the ANNs. Therefore, in this feature space, when the design sample 
size is small, a linear classifier may be preferred over the ANNs because the performance of the trained linear classifiers 
is superior to that of the ANNs for unknown test samples. 

The relative performance of the ANNs and linear classifiers depends strongly on the configuration of the class 
distributions, however. This can be demonstrated by comparing their performances in another multivariate normal 
feature space with unequal covariance matrices: class a had an identity matrix /, class b had a diagonal matrix with its 
diagonal elements varying from 1 to 2 in equal increment, class n had a diagonal matrix with its diagonal elements 
varying from 1 to 3 in equal increment. The three class means were lined up along a straight line in the k-D feature 
space. Fig. 9 shows an example of the class distributions in a 2-D feature space. The performances of the three 
classifiers in distinguishing class a, which is in the middle, from class b and class n are compared in Figs. 10(a) to 10(c). 
Under these conditions, the 3-output-node classifiers had slightly higher test A^ when Nuain was small, but the A^ in the 
limit of Ntrain->o° Seemed to approach a level slighdy lower than those of the 1-output-node ANN for the higher 
dimensional (9-D and 12-D) feature spaces. As expected, the linear classifiers were not able to distinguish the class a in 
the middle of class b and class n. Their performance was close to random guess for all sample sizes. These indicated 
that ANNs can be superior to a linear classifier for classification tasks with complex class distributions. 

4. CONCLUSIONS 

In this study, we explored some properties of 3-class and 2-class approaches to a 3-class classification task 
under simplifying conditions. By using Monte Carlo simulation study, we have examined the dependence of the 
performances of different classification schemes on design sample sizes for some featiu-e space configurations.   We 
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found that a 3-class approach can achieve higher classification accuracy than a 2-class approach under some conditions. 
Applying a 2-D ROC analysis to the output of a 3-output-node ANN achieved similar classification accuracy as that of a 
1-output-node ANN. The ANNs may not be the method of choice for some classification tasks when the available 
design sample size is small. A complete treatment of 3-class classification using a 6-D ROC analysis is very complex 
and was not attempted in this preliminary study. Further investigation is underway to investigate if 3-class approaches 
can improve the accuracy for some classification tasks in CAD. 
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Fig. 4(a).  Three-class approach for a 3-class classification task: 
2-D decision plane with two linear decision boundaries. 

Fig. 4(b). Two-class approach for a 3-class classification task: 
k-D feature space (shown in 2-D as an example) with one 
linear decision boundary. 

Fig. 5(a). Two-class approach for a 3-class classification task: a 
linear decision boundary that assumes UAb > UAU • 

Fig. 5(b). Two-class approach for a 3-class classification task: 
a linear decision boundary that assumes UAb < UAH ■ 
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Fig. 8. Classification performance in terms of A^ for differentiating class a from class b and class n. The class distributions in 3-D, 
6-D, 9-D, 12-D feature spaces are multivariate normal with equal covariance matrices and class means located at the vertices 
of an equilateral triangle, (a) ANN: k input nodes, k hidden nodes, 3 output nodes, (b) ANN: k input nodes, k hidden nodes, 1 
output node, and (c) linear classifier. Solid curves: training results. Dashed curves: test results. 
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Fig. 9.  A 3-class feature space with multivariate normal class distributions. The covariance matrices are diagonal and the three 
class means are located along a line. The example is illustrated in 2-D. 
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Fig. 10. Classification performance in terms of A^ for differentiating class a from class b and class n. The class distributions in 
3-D, 6-D, 9-D, 12-D feature spaces are multivariate normal with unequal covariance matrices and class means along a line, 
(a) ANN: k input nodes, k hidden nodes, 3 output nodes, (b) ANN: k input nodes, k hidden nodes, 1 output node, and (c) 
linear classifier. Solid curves: training results. Dashed curves: test results. 
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ABSTRACT 

We conducted an observer performance study using receiver operating characteristic (ROC) methodology to 
evaluate the effects of computer-aided diagnosis (CAD) on radiologists' performance for characterization of masses on 
serial mammograms. The automated CAD system, previously developed in our laboratory, can classify masses as 
malignant or benign based on interval change information on serial mammograms. In this study, 126 temporal image 
pairs (73 malignant and 53 benign) from 52 patients containing masses on serial mammograms were used. The 
corresponding masses on each temporal pair were identified by an experienced radiologist and automatically segmented 
by the CAD program. Morphological, texture, and spiculation features of the mass on the current and the prior 
mammograms were extracted. The individual features and the difference between the corresponding current and prior 
features formed a multidimensional feature space. A subset of the most effective features that contained the current, 
prior, and interval change information was selected by a stepwise procedure and used as input predictor variables to a 
linear discriminant classifier in a leave-one-case-out training and testing resampling scheme. The linear discriminant 
classifier estimated the relative likelihood of malignancy of each mass. The classifier achieved a test A^ value of 0.87. 
For the ROC study, 4 MQSA radiologists and 1 breast imaging fellow assessed the masses on the temporal pairs and 
provided estimates of the likelihood of malignancy without and with CAD. The average A^ value for the likelihood of 
malignancy estimated by the radiologists was 0.79 without CAD and improved to 0.87 with CAD. The improvement was 
statistically significant (p=0.0003). This preliminary result indicated that CAD using interval change analysis can 
significantly improve radiologists' accuracy in classification of masses and thereby may increase the positive predictive 
value of mammography. 

Keywords: Computer-Aided Diagnosis, Interval Changes, ROC Observer Study, Classification, Mammography, Breast 
Cancer. 

1. INTRODUCTION 

Mammography is currently the most sensitive method for detecting early breast cancer, and it is also the most 
practical screening exam ''^ compared with other breast imaging techniques. However, the specificity of mammography 
is relatively low, only 15-30% of suspected breast lesions recommended for biopsy are actually malignant '"'. The 
unnecessary biopsies increase health care costs and cause patient anxiety and morbidity. If the specificity of 
differentiating malignant and benign mammographic lesions can be improved, the efficacy of mammography will be 
enhanced. 

L. H. (correspondence): e-mail:lhadjiski@umich.edu 
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One of the important techniques that radiologists use in mammographic interpretation is to compare the current 
mammograms of a patient with those obtained in previous years, if available. The interval change information can help 
the detection of abnormalities, and identification of malignant breast lesions. It is shown that comparison with prior 
mammograms can improve both the sensitivity and specificity in breast cancer diagnosis *■'. 

In an early investigation, Chan et al. ^ demonstrated that computer-aided diagnosis (CAD) could improve 
significantly radiologists' detection of subde mammographic microcalcification in an ROC study. This promising result 
stimulated continued development of CAD systems. To date, a number of CAD algorithms have been developed to 
detect suspicious masses and microcalcifications and to distinguish malignant and benign lesions on mammograms. 
Several ROC studies have shown that CAD systems could improve radiologists' accuracy in characterization of breast 
lesions. It has also been reported that CAD systems can increase the detection of breast cancers on screening 
mammograms in clinical practice'''". 

Chan et al " performed an observer study to evaluate the effects of CAD, designed for characterization of 
malignant and benign masses on single view mammograms'^, on radiologists' diagnostic accuracy. They found that the 
radiologists' accuracy for classification of masses as malignant or benign in terms of the area under receiver operating 
characteristic (ROC) curve (AJ was significantly improved (p=0.022 for one-view reading and 0.007 for two-view 
reading) with CAD compared to that without CAD. Huo et al " also conducted an observer study with 12 radiologists 
to classify masses on multiple views of mammograms. They also found that the radiologists' performance in terms of A^ 
was significantly improved (p=0.001) with computer aid. Jiang et al '" performed an observer study to evaluate the 
effect of CAD on radiologists' classification of microcalcification clusters on mammograms. They found that with the 
computer aid the radiologists achieved a statistically significant improvement (p<0.0001). 

The CAD systems for lesion classification so far employed information from a single exam.'^''"*"". Based on the 
experiences of radiologists, it can be expected that even higher accuracy may be achieved if the computer can utilize the 
interval change information from multiple exams for classification. We recently^" developed a classification scheme that 
combines prior and current information automatically extracted from masses on prior and current mammograms, 
respectively. We found that the classifier using the combined prior and current information performed significantly 
better (p=0.015) in terms of A^ than the classifier using current information alone. The current study investigated the 
effects of CAD on assisting radiologists in evaluating interval changes in serial mammograms. To our knowledge, this 
is the first ROC experiment to evaluate the effects of a computer classifier using interval change information on 
radiologists' diagnosis of breast cancers. 

2. MATERIALS AND METHODS 
2.1 Data set 

We selected a set of 126 temporal pairs of mammograms containing biopsy-proven masses on the current 
mammograms from our database. The mammograms in the database were digitized consecutively from the patients who 
had undergone breast biopsy in our department. The selection criterion used in the current study was that the case had 
serial exams in which a corresponding mass could be identified. The mammograms thus contained masses covering a 
range of sizes and conspicuity that will be seen in clinical practice. The data set consisted of 220 mammograms firom 52 
patients. The mammograms were digitized with a LUMISCAN 85 laser scanner at a pixel resolution of SOjum X SOjum 
and 4096 gray levels. The image matrix size was reduced by averaging every 2x2 adjacent pixels and down-sampled by 
a factor of 2 to obtain images with a pixel size of lOOjum x 100//m for analysis by the computer. 

There were 53 biopsy proven masses (32 malignant and 21 benign) in the 52 cases. The 220 mammograms 
contained different mammographic views (CC, MLO, and lateral views) and multiple serial examinations of the masses 
including the examination when the biopsy decision was made. By matching masses of the same view from two different 
examinations, a total of 126 temporal pairs were formed, of which 73 were malignant and 53 benign. Since all cases in 
this data set had undergone biopsy, the benign masses in this set could not be distinguished easily from the malignant 
ones based on current mammographic criteria. For the malignant masses in this data set, the average mass size was 7.9 
mm on the prior mammograms and 12.0 mm on the current mammograms. The corresponding sizes were 9.8 mm and 
11.4 mm, respectively, for the benign masses. 
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To simulate a more realistic clinical situation 34 additional temporal pairs containing corresponding normal 
structures in the serial mammograms were also included. In this way the radiologist also has to distinguish mass- 
mimicking fibroglandular tissue from malignant masses. The temporal pairs had a time interval of 6 to 48 months. 
More than 67% of the pairs had a time interval of 12 months. 

2.2 Design of classifler for classification of masses in serial mammograms 

We have developed a novel classification technique that utilizes the current and prior information on serial 
mammograms to characterize the masses. The classification technique has been described in detail elsewhere^". The 
method is summarized in the flowchart shown in Figure 1. Initially a region of interest (ROI) containing the mass was 
defined by a radiologist on both the current and prior mammograms. Automatic segmentation of the mass within each 
ROI was performed based on an active contour model ^'•^^. A set of texture, morphological, and spiculation features 
were extracted for each mass. 

Current, 
Prior, 

Difference 
Features 

LDA 

Discriminant Score 

Figure 1. Block-diagram of the classification method. 

The texture features were based on run-length statistics (RLS) matrices ". The RLS matrices were computed 
from the images obtained by the rubber band straightening transform (REST) '^. The REST maps a band of pixels 
surrounding the mass onto a rectangular region. Five texture measures were extracted from the vertical and horizontal 
gradient images derived from the REST image in two directions '^. Therefore, for each ROI, a total of 20 RLS features 
were calculated. Morphological features were extracted from the automatically segmented mass shape and gray levels 
^^■^''. Spiculation features were extracted by using the statistics of the image gradient du-ection relative to the normal 
direction to the mass border in a ring of pixels surrounding the mass ^'•". A total of 35 features (20 RLS, 12 
morphological and 3 spiculation) were therefore extracted from each ROI. Additionally, difference features were 
obtained by subtracting a prior feature from the corresponding current feature, resulting in 35 difference features. 

A "leave-one-case-out" resampling scheme was used for the training and testing of the classifier. In order to 
reduce the dimensionality of the feature space, a stepwise feature selection was employed to select the most effective 
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feature subset from each training cycle, 
training subsets. 

An average of 7 features were selected for the classification task from the 

A relative malignancy rating by the computer classifier on a scale of 1 to 10 was provided to the radiologists 
for the reading with CAD. The relative malignancy rating was obtained by linearly scaling the classifier output within 
the interval between 1 and 10 and then rounding the result to the closest integer. A higher rating corresponded to a 
higher likelihood of being malignant. Gaussian functions were fitted to the distributions of the malignant and benign 
samples to obtain a fitted binormal distribution with the classifier's malignancy ratings scaled to the range of 1 to 10 
(Figure 2). The fitted distribution was displayed on the graphical user interface as a reference when the radiologist 
evaluated the cases using CAD. 
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Figure 2. Binormal distribution fitted to the histogram. 

2.3 Radiologist's classification of masses in serial mammograms 

The observer study was designed to compare radiologists' performance on the classification of malignant and 
benign breast masses with and without CAD. The ROIs extracted from the current and the prior mammograms 
containing the corresponding mass was displayed side-by-side on a display monitor. The observers' performance was 
evaluated under two reading conditions. In the first reading condition, the radiologist read the temporal image pair of 
the mass without computer aid. In the second reading condition, the radiologist read the temporal pair with computer 
classifier's relative malignancy rating of the mass displayed on the screen. The observer was asked to provide an 
estimate of the likelihood of malignancy of the mass in a 100-point rating scale under each reading condition. Four 
MQSA radiologists and one breast imaging fellows participated as observers in this study. 

A counter-balanced design was used in arranging the reading orders in different modes and the case orders in 
different reading sessions for the observers.   This approach would minimize the potential effects such as learning, 
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fatigue, and memorization on the outcomes of the observer experiments. A graphic user interface was developed for the 
purpose of presenting the temporal pairs of mass ROIs to the radiologists and recording their ratings. Each observer 
underwent a training session before the actual reading sessions to familiarize them with the performance of the CAD 
system and the experimental procedure. 

2.4 ROC analysis 

The likelihood of malignancy ratings of the individual observers for the two reading conditions were analyzed 
by using ROC methodology. A binormal ROC curve was fitted to each observer's 100-point rating data for each 
reading condition by the LABROC program using maximum likelihood estimation.^' The classification accuracy was 
quantified by using the total area under the fitted ROC curve, A^,. The slope and the intercept parameters for the 
individual ROC curves were also estimated by the LABROC program. For each reading condition, the average 
performance of the radiologists was estimated as the area under an average ROC curve, which was derived from the 
average slope and intercept parameters of the 5 individual observer's ROC curves for that reading condition. The 
statistical significance of the difference in A^ between the two reading conditions was estimated by the Student's two- 
tailed paired t-test on the 5 pairs of individual observer's A^ values. 

3. RESULTS 

The Az values for the 5 radiologists participating in the study for the two reading conditions with and without 
CAD are presented in Fig 3. The computer classifier's test A^ value was 0.87. The average ROC curves for the 5 
observers when reading with and without CAD were plotted in Fig.4. The A^ value from the average ROC curve was 
0.79 for reading without CAD and 0.87 for reading with CAD. The radiologist performance was improved, both 
individually and on average, when reading with the CAD system. The improvement in the average A^ between the 
reading without CAD and the reading with CAD was statistically significant (Student's two-tailed paired t-test, 
p=0.0003). 

The computer classifier's A^ value of 0.87 was higher than the individual radiologists' A^ values obtained 
under the reading condition without CAD. The relatively low accuracy of the radiologists in classifying the masses 
reflected the fact that these were difficult cases that all had been recommended for biopsy. All five radiologists 
improved their accuracy in classification of the malignant and benign masses when the CAD system was available as a 
second opinion. Two radiologists achieved an A^ higher than that of the computer classifier under the reading condition 
with CAD. We did not observe specific differences between the breast imaging fellow compared to the MQSA- 
approved radiologists. The improvement in Aj ranged between 0.06 and 0.1. 

4. CONCLUSION 

We have performed an observer ROC study to evaluate the effects of computer-aided diagnosis on radiologists' 
characterization of masses on serial mammograms. In this observer study the radiologists improved their performance 
with statistically significance (p = 0.0003) when their reading without computer aid was compared to that with computer 
aid. These results suggest that CAD may be helpful in improving the accuracy of malignant and benign mass 
characterization. 
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5 radiologists under two reading conditions: without CAD and with CAD. The average A^ for the two reading 
conditions: no CAD (Az=0.79), with CAD (A2=0.87). 
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Figure 4. Area under ROC curve for the mode without CAD and the mode with CAD by the 5 radiologists. Average 
area for the two reading modes: No CAD (A2=0.79), With CAD (A2=0.87). The difference is statistically significant 
(Student paired t-test, p=0.0003). 
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